
Compiler-assisted checkpointing of
message-passing applications in

heterogeneous environments

Gabriel Rodríguez Álvarez

Department of Electronics and Systems

University of A Coruña, Spain

Department of Electronics and Systems

University of A Coruña, Spain

Phd Thesis

Compiler-assisted checkpointing of

message-passing applications in

heterogeneous environments

Gabriel Rodríguez Álvarez

Diciembre de 2008

PhD Advisors:
María J. Martín Santamaría
and Patricia González Gómez

Dra. María J. Martín Santamaría
Profesora Titular de Universidad
Dpto. de Electrónica e Sistemas
Universidade da Coruña

Dra. Patricia González Gómez
Profesora Titular de Universidad
Dpto. de Electrónica e Sistemas
Universidade da Coruña

CERTIFICAN

Que la memoria titulada �Compiler-assisted checkpointing of message-passing appli-

cations in heterogeneous environments� ha sido realizada por D. Gabriel Rodríguez
Álvarez bajo nuestra dirección en el Departamento de Electrónica e Sistemas de la
Universidade da Coruña y concluye la Tesis Doctoral que presenta para optar al
grado de Doctor en Informática.

A Coruña, 15 de Diciembre de 2008

Fdo.: María J. Martín Santamaría
Codirectora de la Tesis Doctoral

Fdo.: Patricia González Gómez
Codirectora de la Tesis Doctoral

Fdo.: Luís Castedo Ribas
Director del Dpto. de Electrónica e Sistemas

Resumen de la tesis

Introducción

La evolución de la computación paralela hacia infrastructuras cluster y Grid ha
creado nuevas necesidades de tolerancia a fallos. A medida que las máquinas parale-
las incrementan su número de procesadores, también se incrementa la tasa de fallos
del sistema global. Esto no supone un problema mientras el tiempo medio que una
aplicación tarda en terminar su ejecución permanezca por debajo del tiempo medio
hasta fallo (MTTF) del hardware, pero esto no siempre se cumple para aplicaciones
con ejecuciones largas. En estas circunstancias, los usuarios y programadores necesi-
tan disponer de mecanismos que les permitan garantizar que no toda la computación
realizada se pierde al ocurrir un fallo.

El checkpointing se ha convertido en una técnica ampliamente utilizada para la
obtención de tolerancia a fallos. Consiste en el almacenamiento periódico del estado
de la computación, de forma que la ejecución pueda ser restaurada a partir de dicho
estado en caso de fallo. Se han propuesto diversas soluciones y técnicas [22] para
lograr este propósito, cada una con sus propias ventajas e inconvenientes.

Las técnicas de checkpointing aparecieron originalmente como servicios propor-
cionados por el sistema operativo (SO), centradas en la recuperación de aplicaciones
secuenciales. Ejemplos de este tipo de herramientas son KeyKOS [36], que realizaba
checkpointing a nivel del sistema, almacenando el estado del operativo completo,
y Sentry [56], una implementación basada en UNIX que realizaba checkpointing y
registro de eventos no deterministas para aplicaciones secuenciales. Sprite [45] se
centraba en la gestión de la migración de procesos para el checkpoint y reinicio de
procesos en ejecución en computadores de memoria compartida. Su objetivo era ba-
lancear la carga de una red de estaciones de trabajo a través de la migración de
procesos que ejecutaban una única aplicación de memoria compartida a máquinas

v

vi

con baja carga. Al estar implementados en el operativo, estas herramientas eran
completamente ad-hoc, con falta de énfasis en la portabilidad. Su aproximación a la
e�ciencia consistía en obtener un buen rendimiento de E/S para el almacenamiento
del estado de la computación, en lugar de reducir la cantidad de datos a almacenar.

La primera desventaja obvia de las implementaciones basadas en el operativo es
la dependencia existente entre la tolerancia a fallos y el sistema operativo concreto
en uso. Las herramientas de checkpointing comunes en los operativos hasta los 90,
comenzaron a desparecer en entornos populares como UNIX, SunOS o AIX. La ne-
cesidad de soluciones �exibles capaces de operar en entornos diferentes motivaron
la aparición de las soluciones a nivel de aplicación (opuestas a las soluciones a nivel
de sistema). En estas herramientas, la tolerancia a fallos se consigue a través de
la compilación de la aplicación junto con el código de checkpointing ubicado habi-
tualmente en una librería aparte. Las herramientas de checkpointing en este período
eran aún transparentes, almacenando el estado de la aplicación al completo. Al no
implementarse dentro del kernel del operativo debían enfrentarse a problemas im-
portantes al manipular estado dependiente del SO. Ejemplos son la recuperación de
los identi�cadores de procesos o de la tabla de �cheros abiertos. Además, debían
disponer de mecanismos de recuperación de la pila o el montículo. Estos problemas
hacían que el código de las herramientas fuese aún muy dependiente de los servicios
proporcionados por el operativo. Normalmente, esto forzaba a los desarrolladores
a restringir el tipo de servicios que una aplicación podía usar. Ejemplos de herra-
mientas transparentes a nivel de aplicación son Libckpt [49], CATCH GCC [38] (una
versión modi�cada del compilador GNU C), y la herramienta uniprocesador incluída
con el sistema Condor [41].

A mitad de los 90 comenzaron a aparecer soluciones no transparentes que inten-
taban aplicar checkpointing a plataformas de computación distribuida. Su desven-
taja fundamental era la falta de una interfaz estándar para la comunicación entre
procesos. Ejemplos de estas herramientas son Calypso [8] y las extensiones a Do-
me (Distributed Object Migration Enviroment) [10]. En ambos casos el lenguaje de
programación objetivo era una extensión de C++ con construcciones paralelas no
estándar.

La adopción de MPI como el estándar de-facto para programación paralela ha
motivado la aparición de herramientas de checkpointing basadas en esta interfaz en
los últimos años. Al principio, estas herramientas usaban la aproximación transpa-
rente a nivel de aplicación, compartiendo las desventajas de sus primas para aplica-
ciones secuenciales: falta de portabilidad de los datos y restricción de los entornos

vii

soportados, que aquí se re�ere a la implementación concreta de MPI. De hecho, los
checkpointers en esta categoría se implementan generalmente mediante la modi�-
cación de una librería MPI previamente existente. Ejemplos de este tipo de check-
pointers son MPICH-GF [71] y MPICH-V2 [12], ambas implementadas como drivers
MPICH, obligando por tanto a todas las máquinas a disponer de esta implementa-
ción concreta de MPI.

Las nuevas tendencias de computación, tales como el uso de grandes clusters

heterogéneos y sistemas Grid, presentan nuevas restricciones para las técnicas de
checkpointing. La heterogeneidad hace imposible aplicar soluciones tradicionales de
almacenamiento del estado de la computación, que usan estrategias no portables
para la recuperación de estructuras como la pila, el montículo, o el estado de las
comunicaciones de las aplicaciones.

Así, las nuevas técnicas de checkpointing deben proporcionar estrategias para la
recuperación portable del estado de la ejecución, donde ésta pueda ser restaurada en
un amplio rango de máquinas, ya sean éstas incompatibles a nivel binario o usen ver-
siones incompatibles de utilidades software, tales como interfaces de comunicaciones
entre procesos.

Este trabajo presenta CPPC (ComPiler for Portable Checkpointing), una herra-
mienta de checkpointing centrada en la inserción automática de tolerancia a fallos
en aplicaciones de paso de mensajes. Ha sido diseñada para permitir el reinicio
de las ejecuciones en diferentes arquitecturas y/o sistemas operativos, permitiendo
también el checkpointing en sistemas heterogéneos. Utiliza código y protocolos por-
tables, y genera �cheros de estado portables al mismo tiempo que evita el uso de
soluciones tradicionales, como la coordinación de procesos o el registro de mensajes
(message-logging) que están ligadas a falta de escalabilidad.

Metodología de trabajo

El primer paso en la elaboración de la tesis ha sido la revisión de la bibliografía
existente en el ámbito de la tolerancia a fallos de aplicaciones paralelas. Estableci-
das las ventajas y general predominancia de las soluciones basadas en checkpointing,
se ha abordado el diseño partiendo de aplicaciones extremadamente sencillas, cons-
truyendo soluciones ad-hoc y continuando con ejemplos cada vez más complejos y
tratando de abstraer lo común a todas ellas. A partir de estas experiencias, se ha
construido una librería que proporcione apoyo a las tareas comunes necesarias, que

viii

fue posteriormente probada mediante utilización manual para la inserción de tole-
rancia a fallos en diversas aplicaciones cientí�cas de complejidad superior a las ya
estudiadas. En caso de detectar alguna falla, esta fase ha servido para mejorar la
librería, realizando las mejoras necesarias que podían preverse en la etapa de análisis
inicial.

Una vez disponible la librería funcional utilizada para la obtención manual de
tolerancia a fallos, se ha procedido a trabajar en la construcción de la herramienta
de transformación, haciendo uso del conocimiento adquirido mediante la transfor-
mación manual de las aplicaciones, generalizando las técnicas utilizadas y realizando
implementaciones automáticas de dichas transformaciones.

En todo momento, se ha procurado, con vistas a cumplir el objetivo de usabilidad
en entornos heterogéneos, que las soluciones implementadas tengan un diseño tal que
permita su utilización en diferentes entornos de trabajo, bien mediante técnicas de
ingeniería de software especí�cas para dicho �n o mediante el uso de herramientas
de programación que permitan tal característica de forma nativa.

Una vez implementado el grueso de la infraestructura, se ha procedido a realizar
una metódica evaluación experimental de su comportamiento.

Contribuciones

Este trabajo presenta técnicas novedosas para el checkpointing de aplicaciones
paralelas, dirigidas a la obtención de las siguientes propiedades relevantes de tole-
rancia a fallos:

1. Independencia del SO: las estrategias de checkpointing deben ser compatibles
con un amplio espectro de sistemas operativos. Esto implica el disponer de,
al menos, una estructura modular básica que permita la sustitución de ciertas
secciones críticas de código (p. ej. acceso al sistema de �cheros) dependiendo
del SO subyacente.

2. Soporte de aplicaciones paralelas con independencia del protocolo de comu-
nicaciones: la herramienta de checkpointing no debería presuponer el uso de
una interfaz de comunicaciones determinada. Los Grid, por ejemplo, incluyen
máquinas pertenecientes a diferentes entidades independientes que no pueden
ser obligadas a incluir una versión determinada de la interfaz MPI. Incluso

ix

reconociendo el rol de MPI como estándar de-facto para el paso de mensajes,
la técnica de checkpointing no puede estar ligada a nivel teórico con MPI si
debe proporcionar una solución portable y reutilizable.

3. Reducción del tamaño de los �cheros de estado: la herramienta debe optimi-
zar la cantidad de datos almacenados, evitando incluir datos no necesarios
para el reinicio de la aplicación. Esto mejora el rendimiento, que depende en
gran medida del tamaño de los �cheros. También mejora el rendimiento de la
migración de los procesos, en caso de ser necesaria.

4. Recuperación de datos portable: el estado de la aplicación debe ser visto como
una estructura que contiene diversos tipos de datos. La herramienta de che-

ckpointing debe ser capaz de recuperar todos estos datos de forma portable.
Esto incluye la recuperación de estado opaco, como comunicadores MPI, así
como de estado dependiente del operativo, como la tabla de �cheros abiertos
o la pila.

Con respecto a la independencia del SO, se plantea la construcción de una herra-
mienta con una elevada carga de modularidad, que posibilite el reemplazo dinámico
de la implementación de diversas utilidades como puede ser el acceso al sistema de
�cheros o las comunicaciones entre procesos. En este aspecto cobra importancia el
protocolo de reinicio propuesto, basado en la re-ejecución selectiva de código para la
recuperación de las partes críticas del estado que no pueden ser simplemente alma-
cenadas mediante el uso de formatos portables. Para la portabilidad del compilador,
se emplean técnicas basadas en el suministro de datos referentes a las semánticas de
las diversas funciones utilizadas por la aplicación a instrumentar (catálogos semánti-
cos). El suministro de estos datos se realiza mediante �cheros XML que documentan
librerías de funciones ampliamente utilizadas (p. ej. funciones POSIX) proporcio-
nados junto con la herramienta, de forma que el usuario no sea responsable de su
creación.

El soporte de aplicaciones paralelas con independencia del protocolo de comu-
nicaciones utilizado se posibilita, además de por el uso de los catálogos semánticos
anteriormente mencionados, mediante el uso de la técnica de coordinación estática
de los procesos en tiempo de compilación. La creación de los �cheros de estado en
puntos seguros proporciona, además, un alto nivel de escalabilidad a la herramienta.
El compilador incluye análisis de �ujo de comunicaciones y de complejidad de código
que posibilitan la automatización del proceso de inserción de checkpoints en dichos
puntos seguros.

x

La reducción del tamaño de los �cheros, y por tanto la operación e�ciente, se
consigue mediante el almacenamiento de los datos a nivel de variable, esto es, los
datos almacenados en los �cheros de estado son variables de usuario y metadatos
que posibilitan la recuperación de éstos durante el proceso de re-ejecución selectiva
llevado a cabo en el reinicio de las aplicaciones. El compilador incluye análisis de
variables vivas que automatizan la selección de las variables de usuario a almacenar.

Para la recuperación portable de todos los datos de la aplicación se introduce,
aparte del protocolo de reinicio mediante re-ejecución selectiva, un formato jerárqui-
co de los �cheros que permite la recuperación de los datos en el ámbito de ejecución
adecuado. El formato permite también almacenar los determinantes de los eventos
no deterministas (en este caso modelados como la ejecución de rutinas no portables)
de forma que dichos eventos puedan ser re-ejecutados durante el reinicio en idénti-
cas condiciones, restaurando así el estado de forma semánticamente apropiada y con
independencia de la implementación concreta de las rutinas no portables objeto de
la re-ejecución.

Este trabajo presenta también una evaluación experimental de la herramienta
novedosa, dado que se ha realizado en un entorno de computación de altas pres-
taciones público (el Finis Terrae del Centro de Supercomputación de Galicia), a
diferencia de muchas otras herramientas que realizan su evaluación en entornos ce-
rrados y altamente controlados. Para ello, ha sido necesaria la realización de un
elevado volumen de experimentos junto con el uso de técnicas de análisis estadístico
de los datos arrojados por los mismos. Las pruebas se han realizado sobre un gran
número de códigos públicamente disponibles, y se ha proporcionado también gran
cantidad de información sobre la instrumentación introducida en cada código, de
forma que sea posible la repetición y el contraste de los experimentos.

Conclusiones

CPPC es una herramienta de checkpointing transparente para aplicaciones de
paso de mensajes con ejecuciones largas. Está formada por una librería que contie-
ne rutinas de checkpointing, junto con un compilador que automatiza el uso de la
librería. Las aspectos más destacables de esta infraestructura son:

El protocolo de coordinación en tiempo de compilación: la consistencia global
de los diferentes �cheros de estado locales se consigue a través de la ubicación

xi

en puntos seguros de los checkpoints. De este modo, las operaciones relaciona-
das con la consistencia se trans�eren de la ejecución normal de las aplicaciones
a la compilación y el reinicio de las mismas. Durante la compilación, se detec-
tan los puntos seguros y se seleccionan algunos de ellos para la introducción
de checkpoints. Durante el reinicio los procesos involucrados en la ejecución
de la aplicación se comunican entre sí y deciden desde cuál de los checkpoints
debe realizarse el dicho reinicio. La sincronización de procesos utilizada por
las aproximaciones tradicionales se realiza durante el reinicio, mejorando así
la escalabilidad de la solución. Además, se mejora la e�ciencia, dado que tanto
la compilación como el reinicio son operaciones mucho menos frecuentes que
la creación de los �cheros de estado.

La reducción del tamaño de los �cheros de estado: CPPC utiliza una aproxi-
mación a nivel de variable, almacenando sólo aquellas variables que son nece-
sarias durante el reinicio. Al restringir la cantidad de datos almacenados, se
disminuye el tamaño de los �cheros de estado y se reduce la sobrecarga del
checkpointing. Esto mejora también el rendimiento de las transferencias de los
mismos a través de la red, si fuera necesario.

La recuperación portable del estado de la aplicación: la recuperación del es-
tado se realiza de forma portable mediante el formato jerárquico utilizado
para el volcado de los datos y el proceso de re-ejecución selectiva de código
no-portable que tiene lugar durante el reinicio. Esta re-ejecución proporciona
también mecanismos para la recuperación del estado de librerías externas en
uso por la aplicación. La portabilidad es una propiedad interesante debido a
la inherente heterogeneidad de las arquitecturas en boga para la computación
de altas prestaciones, como el Grid. CPPC-G [55] es un proyecto en desarrollo
basado en la creación de una arquitectura de servicios web para dar soporte a
la ejecución de aplicaciones CPPC en entornos Grid.

El diseño modular de la librería: la librería CPPC está implementada en C++,
utilizando un diseño altamente modular que permite la con�guración �exible
de todas sus funcionalidades. Permite con�gurar dinámicamente el formato
de los �cheros de estado, así como activar varias características opcionales
como la compresión de los mismos, importante cuando se trabaja sobre re-
des lentas o con espacio en disco limitado, o comprabaciones de integridad.
El diseño modular permite también la utilización de la herramienta en entor-
nos donde no se dispone de derechos de administración, lo que es común al

xii

trabajar con computadores de altas prestaciones. El uso del patrón modelo-
vista-controlador permite las llamadas a la librería desde diversos lenguajes
de programación, mediante la implementación de una delgada capa de softwa-
re que adapte las peticiones de la aplicación a la interfaz interna del núcleo
CPPC.

El checkpointing completamente transparente: el compilador CPPC convierte
a la librería CPPC en una herramienta de checkpointing totalmente transpa-
rente, pues automatiza todos los análisis y transformaciones necesarios para
el uso de la misma. El compilador incluye también una novedosa técnica pa-
ra la identi�cación automática de lazos intensivos en computación basada en
el análisis de métricas de complejidad de código típicas de la ingeniería del
software.

CPPC ha sido evaluado experimentalmente demostrando su usabilidad, escala-
bilidad, e�ciencia y portabilidad. Es capaz de reiniciar aplicaciones en diferentes
arquitecturas y/o máquinas utilizando diferentes compiladores C/Fortran e imple-
mentaciones MPI, todo ello usando el mismo conjunto de �cheros de estado. El
rendimiento de la herramienta se ha estimado usando aproximaciones estadísticas
sobre los resultados obtenidos de ejecuciones en una infraestructura de computación
pública (el supercomputador Finis Terrae del CESGA).

Hasta donde alcanza nuestro conocimiento, CPPC es el único checkpointer de
aplicaciones de paso de mensajes disponible en el dominio público. CPPC es un
proyecto de código abierto, disponible en http://cppc.des.udc.es bajo licencia
GPL.

El desarrollo de esta tesis ha dado lugar a las siguientes publicaciones:

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. Controla-
dor/preCompilador de Checkpoints Portables. En Actas de las XV Jornadas

de Paralelismo, pp. 253�258, Almería, Septiembre de 2004.

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. On desig-
ning portable checkpointing tools for large-scale parallel applications. En Pro-

ceedings of the 2nd International Conference on Computational Science and

Engineering (ICCSE'05), pp. 191�203. Estambul (Turquía), Junio de 2005.

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. Portable
Checkpointing of MPI applications. En Proceedings of the 12th Workshop on

xiii

Compilers for Parallel Computers (CPC'06), pp. 396�410, A Coruña, Enero
de 2006.

G. Rodríguez, M.J. Martín, P. González y J. Touriño. Controller/Precompiler
for Portable Checkpointing. En IEICE Transactions on Information and Sys-

tems, Vol. E89-D, No. 2, pp. 408�417, Febrero de 2006.

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. CPPC:
Una herramienta portable para el checkpointing de aplicaciones paralelas. en
Boletín de la red nacional de I+D, RedIRIS, No. 80, pp. 57�61, Abril de 2007.

D. Díaz, X.C. Pardo, M.J. Martín, P. González y G. Rodríguez. CPPC-G:
Fault-Tolerant Parallel Applications on the Grid. En Proceedings of the 1st

Iberian Grid Infrastructure Conference (IBERGRID'07), pp. 230�241, Santia-
go de Compostela, Mayo de 2007.

G. Rodríguez, P. González, M.J. Martín y J. Touriño. Enhancing Fault-
Tolerance of Large-Scale MPI Scienti�c Applications. En Proceedings of the

9th International Conference on Parallel Computing Technologies (PaCT'07),
volumen 4671 de Lecture Notes in Computer Science, pp. 153�161, Pereslavl-
Zalessky (Rusia), Septiembre de 2007.

D. Díaz, X.C. Pardo, M.J. Martín, P. González y G. Rodríguez. CPPC-G: Fault
Tolerant Parallel Applications on the Grid. En 3rd Workshop on Large Scale
Computations on Grids (LaSCoG'07). Lecture Notes in Computer Science,
volumen 4967, pp. 852�859, Mayo de 2008. ISBN 978-3-540-68105-2.

G. Rodríguez, X.C. Pardo, M.J. Martín, P. González, D. Díaz. A Fault Tole-
rance Solution for Sequential and MPI Applications on the Grid. En Scalable

Computing: Practice and Experience, Vol. 9, No. 2, pp. 101�109, Junio de 2008.
ISSN 1895-1767.

G. Rodríguez, M.J. Martín, P. González, J. Touriño, R. Doallo. CPPC: A
Compiler-Assisted Tool for Portable Checkpointing of Message-Passing Appli-
cations. En Proceedings of the 1st International Workshop on Scalable Tools for

High-End Computing (STHEC'08), held in conjunction with the 22nd ACM

International Conference on Supercomputing (ICS'08), pp. 1�12, Kos (Grecia),
Junio de 2008.

xiv

Trabajo Futuro

Hay dos aspectos fundamentales en los que mejorar la herramienta CPPC. En
primer lugar, la coordinación espacial de procesos tiene una desventaja importante:
la necesidad de especi�car la frecuencia de checkpointing como un parámetro depen-
diente del número de llamadas a la función de checkpointing, en lugar de en función
del tiempo. Actualmente estamos trabajando en un protocolo ligero y no coordinado
de comunicaciones que permite variar dinámicamente la frecuencia espacial en fun-
ción de una frecuencia temporal especi�cada por el usuario. Este protocolo se basa
en la comunicación no bloqueante entre todos los procesos de información relativa
a la velocidad a la que cada uno de ellos ejecuta el código para, posteriormente,
adoptar una frecuencia espacial que garantice que el proceso más lento crea �cheros
de estado con una frecuencia similar a la especi�cada.

La segunda mejora está relacionada con los análisis de complejidad llevados a
cabo para la inserción de checkpoints en el código. El algoritmo actualmente usado en
el compilador CPPC puede ser mejorado a través del uso de métricas más complejas,
de forma que sea posible obtener resultados más próximos a los óptimos.

Abstract

With the evolution of high performance computing towards heterogeneous, mas-
sively parallel systems, parallel applications have developed new checkpoint and
restart necessities. Whether due to a failure in the execution or to a migration
of the processes to di�erent machines, checkpointing tools must be able to oper-
ate in heterogeneous environments. However, some of the data manipulated by a
parallel application are not truly portable. Examples of these include opaque state
(e.g. data structures for communications support) or diversity of interfaces for a
single feature (e.g. communications, I/O). Directly manipulating the underlying
ad-hoc representations renders checkpointing tools incapable of working on di�er-
ent environments. Portable checkpointers usually work around portability issues
at the cost of transparency: the user must provide information such as what data
needs to be stored, where to store it, or where to checkpoint. CPPC (ComPiler for
Portable Checkpointing) is a checkpointing tool designed to feature both portability
and transparency, while preserving the scalability of the executed applications. It
is made up of a library and a compiler. The CPPC library contains routines for
variable level checkpointing, using portable code and protocols. The CPPC com-
piler achieves transparency by relieving the user from time-consuming tasks, such
as performing code analyses and adding instrumentation code.

Index terms � Fault tolerance, checkpointing, parallel programming, message-
passing, MPI, compiler support.

Acknowledgements

Many people have contributed to the work presented in this thesis. My Ph.D.
advisors, María and Patricia, have made it possible with their constant support and
hard work, as well as their sheer patience. Although not an advisor, Juan has also
greatly contributed to the development of this work through both his e�orts and his
invaluable sense of criticism. I also want to extend my thanks to the people at the
Computer Architecture Group, particularly to its head Ramón Doallo, and at the
Department of Electronics and Systems.

On a personal level, this work would not have been the same without the solid
anchorage point my family provides. And certanly not the same without María,
who should be thanked for all the things that do not �t on this page. Also on a
personal level � albeit admittedly a geeky one � Marcos and José have a habit of
making things always brighter and sharper through their ideas, criticism, and also
their moaning and whining (strictly when necessary).

I also want to acknowledge the following persons and institutions: CESGA (Gali-
cian Supercomputing Center) for providing access to their computing resources, par-
ticularly the Finis Terrae supercomputer, and specially to José Carlos Mouriño for
helping me out in my struggles with their computing environment; the Laboratory
for Advanced Systems Research of the University of Texas at Austin, specially to
Prof. Lorenzo Alvisi, for hosting me during my research visit in 2007; Dr. Volker
Strumpen of IBM and Prof. Keshav Pingali of the University of Texas at Austin
for their suggestions for the improvement of this work; and the VARIDIS research
group of the Politechnical University of Catalonia for providing access to their Fekete
application.

I gratefully thank the following institutions for funding this work: the Depart-
ment of Electronics and Systems of A Coruña for the human and material support;
the University of A Coruña for �nancing my attendance to some conferences; the

xviii

Xunta de Galicia (project PGIDIT04TIC105004PR); the Ministry of Science and
Innovation of Spain (FPU grant AP-2004-2685 and projects TIN2004-07797-C02-02
and TIN2007-67537-C03-02); and CYTED (Iberoamerican Programme of Science
and Technology for Development; project 506PI0293).

�Research is what I'm doing when I
don't know what I'm doing�

� Wernher Von Braun

Contents

Preface 1

1. Fault tolerance for parallel applications 7

1.1. Approaches for parallel fault tolerance 8

1.1.1. Using intercommunicators . 8

1.1.2. Modi�cations to MPI semantics 9

1.1.3. MPI extensions . 9

1.1.4. Rollback-recovery . 10

1.2. Checkpoint-based approaches . 11

1.2.1. Uncoordinated checkpointing 11

1.2.2. Coordinated checkpointing . 13

1.2.3. Communication-induced checkpointing 15

1.3. Log-based approaches . 15

1.3.1. Pessimistic log-based approaches 16

1.3.2. Optimistic log-based approaches 17

1.3.3. Causal log-based approaches 18

1.4. Implementation properties of rollback-recovery protocols 18

xxi

xxii CONTENTS

1.4.1. Granularity . 18

1.4.2. Transparency . 20

1.4.3. Portability . 20

1.5. Existing checkpointing tools . 21

1.5.1. CoCheck . 21

1.5.2. CLIP . 21

1.5.3. Porch . 22

1.5.4. Egida . 22

1.5.5. Star�sh . 23

1.5.6. MPICH-V2 . 23

1.5.7. MPICH-GF . 24

1.5.8. PC3 . 24

1.6. Proposal . 24

1.6.1. Spatial coordination . 25

1.6.2. Granularity and portability 27

1.7. Summary . 28

2. CPPC Library 31

2.1. View . 31

2.1.1. CPPC initialization and shutdown 32

2.1.2. Variable registration . 34

2.1.3. Non-portable calls . 35

2.1.4. Context management . 37

2.1.5. Open �les . 38

CONTENTS xxiii

2.1.6. Checkpoint �le dumping . 39

2.1.7. Application restart . 39

2.2. Controllers . 41

2.3. Model . 42

2.3.1. Façade . 43

2.3.2. Checkpointing layer . 53

2.3.3. Writing layer . 56

2.3.4. Portability layer . 57

2.3.5. Utility layer . 59

2.4. Summary . 60

3. CPPC Compiler 63

3.1. Compiler overview . 63

3.2. Analyses and transformations . 67

3.2.1. CPPC initialization and �nalization routines 67

3.2.2. Procedure calls with non-portable outcome 68

3.2.3. Open �les . 68

3.2.4. Conversion to CPPC statements 69

3.2.5. Data �ow analysis . 70

3.2.6. Communication analysis . 73

3.2.7. Checkpoint insertion . 78

3.2.8. Language-speci�c transformations 81

3.2.9. Code generation . 82

3.3. Case study . 82

xxiv CONTENTS

3.4. Implementation details . 86

3.4.1. Fortran 77 support . 86

3.4.2. Sharing code between the C and Fortran 77 compilers 88

3.4.3. AST analyzers . 89

3.5. Related work . 91

3.6. Summary . 92

4. Experimental Results 95

4.1. Introduction . 95

4.2. Compiler . 98

4.2.1. Analysis of the instrumented codes 98

4.2.2. Compilation times . 118

4.3. Library . 119

4.3.1. State �le sizes . 123

4.3.2. State �le creation time . 124

4.3.3. Checkpoint overhead . 131

4.3.4. Restart times . 134

4.4. Summary . 137

Conclusions and future work 141

Bibliography 145

List of Tables

2.1. Interface summary of the CPPC library 33

2.2. CPPC con�guration parameters . 45

3.1. Semantic roles used by the CPPC compiler 66

4.1. Summary of test applications . 96

4.1. Summary of test applications (continued) 97

4.2. Detail of loops selected by the shape-based threshold for NAS BT . . 100

4.3. Detail of loops selected by the shape-based threshold for NAS CG . . 102

4.4. Detail of loops selected by the shape-based threshold for NAS EP . . 102

4.5. Detail of loops selected by the shape-based threshold for NAS FT . . 104

4.6. Detail of loops selected by the shape-based threshold for NAS IS . . . 107

4.7. Detail of loops selected by the shape-based threshold for NAS LU . . 107

4.8. Detail of loops selected by the shape-based threshold for NAS MG . . 109

4.9. Detail of loops selected by the shape-based threshold for NAS SP . . 109

4.10. Detail of loops selected by the shape-based threshold for CESGA

CalcuNetw . 112

4.11. Detail of loops selected by the shape-based threshold for CESGA Fekete115

xxv

xxvi LIST OF TABLES

4.12. Detail of loops selected by the shape-based threshold for DBEM . . . 118

4.13. Detail of loops selected by the shape-based threshold for STEM-II . . 118

4.14. Statistics and compilation times for test applications 120

4.15. Breakdown of compilation times for test applications 121

4.16. Number of nodes and cores used for runtime tests for each application 122

4.17. Performance of the automatic variable registration algorithm 124

4.18. Checkpoint �le creation times (seconds) 132

4.19. Runtime overhead caused by checkpointing 135

4.20. Runtime overhead on large-scale applications 136

4.21. Restart times (seconds) . 137

List of Figures

1. Design of the CPPC framework . 4

1.1. Domino e�ect in uncoordinated checkpointing 13

1.2. Spatial coordination for non-blocking coordinated checkpointing . . . 26

2.1. Global design of the CPPC framework 43

2.2. Pseudocode of the algorithm for �nding the recovery line 47

2.3. Data hierarchy format used for writing plugins 52

3.1. Semantic information for the fopen and open functions 65

3.2. Example of a non-portable procedure call transformation 68

3.3. Pseudocode for a �le opening transformation 69

3.4. Pseudocode for a �le closing transformation 69

3.5. First step: shape-based threshold . 79

3.6. Second step: cluster-based threshold 80

3.7. Modi�cations to a checkpointed Fortran 77 loop 81

3.8. Case study: original DBEM code . 83

3.9. Case study: CPPC-instrumented DBEM code 84

3.10. Case study: CPPC-instrumented DBEM code (cont.) 85

xxvii

xxviii LIST OF FIGURES

3.11. AST analyzer implementation by instantiation of the method dispatcher 90

4.1. Checkpoint insertion for NAS BT . 99

4.2. Checkpoint insertion for NAS CG . 101

4.3. Checkpoint insertion for NAS EP . 103

4.4. Checkpoint insertion for NAS FT . 105

4.5. Checkpoint insertion for NAS IS . 106

4.6. Checkpoint insertion for NAS LU . 108

4.7. Checkpoint insertion for NAS MG . 110

4.8. Checkpoint insertion for NAS SP . 111

4.9. Checkpoint insertion for CESGA CalcuNetw 113

4.10. Checkpoint insertion for CESGA Fekete 114

4.11. Checkpoint insertion for DBEM . 116

4.12. Checkpoint insertion for STEM-II . 117

4.13. File sizes for NAS BT . 125

4.14. File sizes for NAS CG . 125

4.15. File sizes for NAS EP . 126

4.16. File sizes for NAS FT . 126

4.17. File sizes for NAS IS . 127

4.18. File sizes for NAS LU . 127

4.19. File sizes for NAS MG . 128

4.20. File sizes for NAS SP . 128

4.21. File sizes for CESGA Fekete . 129

4.22. File sizes for DBEM . 129

LIST OF FIGURES xxix

4.23. File sizes for STEM-II . 130

4.24. Summary of �le sizes . 130

4.25. Maximum mean dumping times for test applications 133

4.26. Restart times for test applications . 138

Preface

Parallel computing evolution towards cluster and Grid infrastructures has created
new fault tolerance needs. As parallel machines increase their number of processors,
so does the failure rate of the global system. This is not a problem as long as
the mean time to complete an application's execution remains well under the mean
time to failure (MTTF) of the underlying hardware, but that is not always true
for applications with large execution times. Under these circumstances, users and
programmers need a way to ensure that not all computation done is lost on machine
failures.

Checkpointing has become a widely used technique to obtain fault tolerance.
It periodically saves the computation state to stable storage so that the applica-
tion execution can be resumed by restoring such state. A number of solutions and
techniques have been proposed [22], each having its own pros and cons.

Current trends towards new computing infrastructures, such as large heteroge-
neous clusters and Grid systems, present new constraints for checkpointing tech-
niques. Heterogeneity makes it impossible to apply traditional state saving tech-
niques which use non-portable strategies for recovering structures such as application
stack, heap, or communication state.

Therefore, modern checkpointing techniques need to provide strategies for por-
table state recovery, where the computation can be resumed on a wide range of
machines, from binary incompatible architectures to incompatible versions of soft-
ware facilities, such as di�erent implementations for communication interfaces.

This work presents a checkpointing framework focused on the automatic insertion
of fault tolerance into long-running message-passing applications. It is designed to
allow for execution restart on di�erent architectures and/or operating systems, also
supporting checkpointing over heterogeneous systems, such as the Grid. It uses
portable code and protocols, and generates portable checkpoint �les while avoiding

1

2 PREFACE

traditional solutions (such as process coordination or message logging) which add
an unscalable overhead.

Checkpointing evolution

Checkpointing techniques appeared as operating system (OS) services, usually
focused on recovery of sequential applications. Examples are KeyKOS [36], which
performed system-wide checkpointing, storing the entire OS state, and the Sen-
try [56], a UNIX-based implementation which performed checkpointing and journal-
ing for logging of non-deterministic events on single processes. Sprite [45] dealt with
the process migration aspect of checkpoint-and-restart recovery for shared memory
computers. Its focus was balancing the workload of a network of workstations by
migrating all the processes executing a single shared-memory application to idle
machines. Being implemented into the OS, these checkpointing solutions were com-
pletely ad-hoc, with a lack of emphasis on portability. Their approach to operation
e�ciency was based on achieving good I/O performance for storing the whole com-
putation state, instead of reducing the amount of data to be stored.

The �rst obvious disadvantage of OS-based implementations is the hard depen-
dency between fault tolerance and the operating system of choice. Checkpointing
facilities, which were a common feature in earlier operating systems, gradually dis-
appeared in the early 90s and were unavailable for popular environments such as
UNIX, SunOS or AIX. The desire for �exible solutions which could operate in di�er-
ent environments motivated the emergence of application level solutions (as opposed
to system level solutions). In these tools, fault tolerance is achieved by compiling
the application program together with the checkpointing code, usually found in a
library. Checkpointing solutions in this period were still transparent, storing the
entire application state. Not being implemented inside the kernel they had to solve
important problems when manipulating OS-dependent state. Examples are restor-
ing process identi�ers or tracing open �les. Also, they had to �gure out ways to
recover the application stack or heap. These issues made their codes still very de-
pendent on speci�c operating system features. Usually, this forced developers to
restrict the type of OS facilities used by the checkpointed programs. Examples of
application level, transparent tools include Libckpt [49], CATCH GCC [38] (a mod-
i�ed version of the GNU C compiler), and the uniprocessor checkpointing facility
included with the Condor batch system [41].

PREFACE 3

Also in the mid-90s some non-transparent solutions tried to apply checkpoint-
ing to distributed platforms. Their fundamental drawback was the lack of common
ground regarding the interface for interprocess communication, which made these so-
lutions tied to a speci�c and non-standard interface. Examples of these frameworks
are Calypso [8] and extensions to Dome (Distributed Object Migration Environ-
ment) [10]. In both cases the programming language used was an extension of C++
with non-standard parallel constructs.

The adoption of MPI as the de-facto standard for parallel programming spawned
the appearance of many MPI-based checkpointing tools in the last years. At �rst,
these used the transparent application level approach, sharing the same drawbacks as
their uniprocessor counterparts: lack of data portability and restriction of supported
environments, which here refers to the underlying MPI implementation. In fact,
checkpointers in this category are generally implemented by modifying a previously
existing MPI library. Examples of these types of checkpointers are MPICH-GF [71]
and MPICH-V2 [12], both implemented as MPICH drivers, thus forcing all machines
to run this speci�c implementation.

More recently, the advent of the Grid requires that checkpointers evolve towards
application level approaches that enable both data portability, by storing data using
portable representation formats, and communication-layer independence, by imple-
menting the solution in a higher level of abstraction.

The CPPC Framework

As stated in the previous section, modern computing trends require portable
tools for message-passing applications, focusing on providing the following funda-
mental features:

1. OS-independence: checkpointing strategies must be compatible with any given
operating system. This means having at least a basic modular structure to
allow for substitution of certain critical sections of code (e.g. �lesystem access)
depending on the underlying OS.

2. Support for parallel applications with communication protocol independence:
the checkpointing framework should not make any assumption as to the com-
munication interface or implementation being used. Computational Grids in-
clude machines belonging to independent entities which cannot be forced to

4 PREFACE

Figure 1: Design of the CPPC framework

provide a certain version of the MPI interface. Even recognizing the role of
MPI as the message-passing de-facto standard, the checkpointing technique
cannot be theoretically tied to MPI in order to provide a truly portable,
reusable approach.

3. Reduced checkpoint �le sizes: the tool should optimize the amount of data
being saved, avoiding dumping state which will not be necessary upon appli-
cation restart. This improves performance, which depends heavily on state �le
sizes. It also enhances performance of the process migration in computational
Grids.

4. Portable data recovery: the state of an application can be seen as a structure
containing di�erent types of data. The checkpointing tool must be able to
recover all these data in a portable way. This includes recovery of opaque
state, such as MPI communicators, as well as of OS-dependent state, such as
the �le table or the execution stack.

The CPPC framework (ComPiler for Portable Checkpointing) provides all these
features which are key issues for fault-tolerance support on heterogeneous systems. It
appears to the user as a runtime library containing checkpoint-support routines [54],
together with a compiler which automates the use of the library. The global pro-
cess is depicted in Figure 1. Upon runtime, the fault tolerant parallel application
performs calls to the routines provided by the CPPC Library.

Organization of this Thesis

The structure of this work is as follows. Chapter 1 describes the various alter-
natives for fault tolerance in parallel applications. It surveys the existing rollback-
recovery tools focusing on MPI applications. It also describes the CPPC proposal,
outlining its most important characteristics and design decisions.

Chapter 2 provides an in-depth description of the design and implementation of
the CPPC library following a top-down approach, starting at the application code

PREFACE 5

and descending through the various layers in which the library is divided. It also
focuses on the modi�cations that need to be performed to the original code in order
to achieve integration with CPPC.

In Chapter 3 the design and implementation of the CPPC source-to-source com-
piler are covered. It also provides details on the design decisions taken to enable
the reusability of the platform. Finally, it includes a related work section covering
research focused on the static analysis and checkpoint insertion of programming
codes.

Chapter 4 describes the thorough experimental evaluation of the entire CPPC
framework, including results to assess the performance of both the compiler and
the checkpointing library. The experimental tests were performed on the Finis Ter-
rae supercomputer hosted by the Galician Supercomputing Center (CESGA). This
provides a more accurate performance estimation than using highly controlled and
closed environments available to a particular research group only.

Finally, the work is concluded by outlining its most relevant aspects and dis-
cussing future research lines.

Chapter 1

Fault tolerance for parallel

applications

The need for an evergrowing computational power has always been one of the fun-
damental driving forces of computer evolution, motivated by emerging requirements
in such application �elds as sciences, engineering, or even leisure. The traditional
approach for this evolution has been the enhancement of already-known technolo-
gies: building Von Neumann machines with faster processors and larger amounts of
memory. This approach is not always feasible, however. There are physical limits
imposed by several factors, such as the machines in charge of circuit integration,
or the amount of energy the circuits are able to dissipate as heat. There are also
economic constraints: the cost of new developments does not achieve return-on-
investment for certain projects. These limitations are one of the most important
reasons for the popularization of parallel computing: an approach that seeks to
break down a problem into subtasks which can be solved in a concurrent fashion.

Parallel applications are a special target for fault tolerance. Interprocess commu-
nications generate dependencies between processes participating in a parallel execu-
tion. Therefore, fault tolerance mechanisms cannot be applied individually to each
process in an independent way. Simply recovering a failed process can break the
established dependencies, thereby creating inconsistencies at the application level.

Conceptually di�erent approaches to solving the parallel fault tolerance problem
have been developed. Although rollback-recovery is the most widely used, a brief
survey of other options is included in order to completely understand its advantages
over its competitors. At the end of this chapter, Section 1.6 gives an overview of

7

8 Chapter 1. Fault tolerance for parallel applications

the fault-tolerance tool introduced in this work.

1.1. Approaches for parallel fault tolerance

This chapter focuses on fault tolerance approaches for MPI applications [31]. The
reason is MPI's status as de-facto standard. However, there is no real limitation for
applying the covered techniques to other frameworks, like PVM (Parallel Virtual
Machine) [65].

1.1.1. Using intercommunicators

For applications organized in a master-slave fashion, the failure of a client does
not signi�cantly a�ect the server or the other clients that are able to continue execut-
ing properly. This structure is robust because communications are always two-sided,
and one of the sides is able to easily detect that the other one has failed. Therefore,
it is a good context for introducing fault tolerance.

In MPI, the structure which models this kind of two-sided communications is
the intercommunicator. Processes in an intercommunicator are organized into two
groups, and all communications take place between processes in one group and pro-
cesses in the other. In master-slave applications, the master manages a set of tasks
which are submitted to slaves that carry them out. These slaves return the results
to the master when the job is done, and ask for a new task to perform. All com-
munications take place between a slave and the master, and there are no collective
communications nor communications between two di�erent slave processes.

In order for the master to detect a slave's failure, it can simply replace the default
failure handler MPI_ERRORS_ARE_FATAL with a new one, which reassigns the task the
faulty slave was performing to a di�erent one. Tasks are usually small, and therefore
the slave state at the time of failure can be forgotten, simply starting the task over.

In case the master fails, it is necessary to use any of the other approaches in this
section for recovering its state. The use of checkpoint-based rollback recovery (see
Section 1.1.4) is usually very e�cient, since the master's state consists basically of
task speci�cations, their current statuses, and results of completed ones.

1.1 Approaches for parallel fault tolerance 9

1.1.2. Modi�cations to MPI semantics

MPI objects and function semantics can be modi�ed so that its behavior is
made inherently fault tolerant. For instance, collective communications could behave
di�erently in the presence of failed processes, or certain pieces of data could be
redistributed upon failure detection.

One such approach is FT-MPI [24], a fault tolerant MPI implementation that
can survive failures, while o�ering the application developer a range of recovery
options. The approach in this case is to extend MPI semantics, substituting the two
MPI communicator states (valid or invalid) by an array which can be simpli�ed to
{OK, PROBLEM, FAILED}. The introduction of an intermediate state allows FT-MPI
to deal with communications in the presence of errors in a fault-tolerant way.

When a non-recoverable error in a process is detected, its communicator needs
to be modi�ed, either making it smaller (redistributing ranks), leaving a blank to
be �lled later, or creating a new process to �ll in the blank left by the failed one.

While interesting from a scienti�c point of view, this approach sacri�ces the very
reason for MPI existence: the standard. Fault tolerance remains a property of the
MPI implementation, and not of the application code, which will behave di�erently
when executed on standard MPI implementations and the semantically modi�ed
one.

1.1.3. MPI extensions

Instead of modifying function and object semantics, new ones are introduced to
provide fault tolerance. This approach presents the same problem as did semantic
modi�cations, only worse. When extending the MPI interface, the application code
will not even compile if using a non-extended MPI implementation. Besides, extend-
ing MPI is no better than developing isolated, orthogonal fault tolerance libraries.
This is far more interesting, since it may provide fault tolerance capabilities without
restricting the communication environment. One example of extensions to MPI is
MPI/FT [9].

10 Chapter 1. Fault tolerance for parallel applications

1.1.4. Rollback-recovery

The most widespread approach to fault tolerance is rollback-recovery. It is based
on periodically saving the state of the execution to stable storage, recovering it in
case of failure. A system is considered to have been correctly recovered if the ex-
ternally visible behavior of the distributed system is equivalent to some failure-free
execution [62]. Note that it is not required that the recovered state has occurred in
a previous execution. Rather, it is su�cient that it might have happened. There are
many di�erent approaches to rollback-recovery, each of them very di�erent in the
way it implements this basic idea. Although many tools tie themselves to speci�c
systems at the implementation level, a fundamental advantage of rollback recovery
is that it is essentially independent of the programming paradigm or the commu-
nication system being used. Of course, applying it to message-passing applications
implies performing certain tasks to ensure the consistency of the global system,
which should not need to be done when dealing with sequential applications. A
consistent system state for a message-passing application is described by Chandy
and Lamport as one in which every message re�ected as received by a process's
state is re�ected as sent in the corresponding sender process's state [18]. This def-
inition allows for a message to be re�ected as sent by a process, but not received
by its recipient. This is not considered an inconsistent state, since it might happen
in a regular execution. However, the message is considered in-transit [22]. If the
intended receiver of an in-transit message has failed and is recovered on a system
built on reliable communication channels, the rollback-recovery protocol needs to
ensure that the message is recreated and delivered to its recipient. If the system is
built on non-reliable channels, the failure of the receiver is indistinguishable from
the failure of the channel itself, and therefore the delivery of the message will be
handled by the communications system.

There are two core approaches to rollback-recovery: checkpoint-based and log-
based. The former ensures that the processes' state is recovered correctly and con-
sistently up to the last recovery line, which is de�ned as the most recent consistent
set of checkpoints [52]. However, they do not guarantee that the execution of parts
of the code that had already been executed prior to the failure, but after creating the
checkpoint used for recovery, will be deterministically re-executed exactly as they
originally were. Log-based approaches, on the contrary, create and log to stable stor-
age information about non deterministic events, which allows them to recreate such
events after recovery exactly as they played out in the pre-failure execution. These
approaches rely on the so called piecewise deterministic (PWD) assumption [62]: all

1.2 Checkpoint-based approaches 11

nondeterministic events that a process executes can be identi�ed, and the informa-
tion necessary to replay each event during recovery can be logged and encoded in
tuples called the event's determinant. Although log-based approaches are usually
called �message-logging� due to the �rst systems which proposed and implemented
these techniques, the log is not restricted to interprocess communications. More
types of events, such as generation of random variables, might be logged depending
on the actual range of nondeterministic events covered under the PWD for each
di�erent system. This is an implementation issue. Note that sending a message is
not a nondeterministic event.

The next section is devoted to checkpoint-based rollback recovery techniques.
Section 1.3 covers log-based approaches.

1.2. Checkpoint-based approaches

As explained in the previous section, approaches based on checkpointing are able
to correctly and consistently recover an application's state, but they do not rely on
the PWD assumption. Therefore, pre-failure execution cannot be deterministically
regenerated after a rollback. These kinds of approaches are, therefore, not a good
choice when dealing with applications that should preserve their pre-failure behavior
unchanged, such as applications with frequent interactions with the outside world.

Checkpoint-based approaches are classi�ed into three categories: uncoordinated,
coordinated and communication-induced.

1.2.1. Uncoordinated checkpointing

In uncoordinated checkpointing, each process is allowed to take its local check-
points independently from others. This has advantages. First, there is no need to
comply with any coordination protocol that introduces execution overhead. Second,
each process can take its local checkpoints when it better �ts its needs. For instance,
it can do so when the process predicts it is going to be less expensive. However, �nd-
ing recovery lines in uncoordinated checkpointing is a di�cult task. The approach is
susceptible to domino e�ect [52], and since processes checkpoint independently there
is the possibility of creating useless checkpoints, which are those that are never part
of a valid recovery line. This approach also needs a fairly complex garbage collection

12 Chapter 1. Fault tolerance for parallel applications

scheme. These problems are further described in the following subsections.

• Finding valid recovery lines

When a process fails using uncoordinated checkpointing, it must be rolled back
to a previous checkpoint. However, doing so might break interprocess dependencies
introduced by communications. If no further actions are taken, just simply selecting
the most recent checkpoint in the pool will not be enough, since the recovered state
may be inconsistent. In order to �nd out whether a state is inconsistent, the failed
process needs information about the global dependencies in the application.

The way uncoordinated approaches collect these dependencies is by piggybacking
its status into messages sent to other processes [11]. Processes receiving a message
are able to detect that their current state depends on the sender's process state
when it sent the message. When a process fails, it asks all other processes to send
it their saved dependency information. Using this information, it is able to build
a graph for �nding a valid recovery line. This involves rolling back other processes
as well to recover a consistent state. Two di�erent, equivalent methods for building
and analyzing such a graph were proposed [11,70].

• Garbage collection

Garbage collection is a very important process in uncoordinated checkpointing.
Since processes create checkpoints independently, eventually some checkpoint �les
will be never used again. Precisely, for each process p, all �les older than the
one in the most recent valid recovery line are obsolete, and can be purged. The
same algorithm used for �nding valid recovery lines is used for determining which
checkpoints can be safely purged. This is an expensive process.

• Domino e�ect

One serious consequence of uncoordinated checkpointing and the algorithms for
�nding valid recovery lines is that their very existence is not guaranteed. Since
checkpoints are taken in an independent way, situations may occur in which no valid
recovery lines can be found, because interprocess dependencies force all processes
to roll back to the very beginning of the application execution. One such situation
is depicted in Figure 1.1. Each mi denotes a message being sent, while each cj,k

1.2 Checkpoint-based approaches 13

denotes the k-th checkpoint in process j. When p3 fails, it �rst considers rolling
back to checkpoint c3,2. Since message m8 imposes a dependency on p2, it would be
forced to roll back to c2,2. This, due to m7, would force p1 to roll back to c1,2. The
analysis moves forward, and the protocol in charge of �nding a valid recovery line
discovers that the only valid solution is to roll back all processes to their respective
beginnings.

Figure 1.1: Domino e�ect in uncoordinated checkpointing

1.2.2. Coordinated checkpointing

The idea behind coordinated checkpointing is to ensure that all processes take
their checkpoints in a way that ensures that no inconsistent state recovery can take
place. There are several ways in which this can be done. The most obvious one
is to stop all application progress while the checkpoint is taken [66]. An initia-
tor, which may be an application process or an external entity, sends a broadcast
message requesting that processes checkpoint. Upon receiving this message, each
process �ushes its local communication channels and creates its local checkpoint
before resuming execution. This process may lead to signi�cant overheads due to
its blocking nature.

In order to reduce the e�ects of coordination, non-blocking coordinated schemes
were proposed. The most studied protocol to date has been the distributed snap-

shots protocol by Chandy and Lamport [18]. The protocol starts with the initiator
broadcasting a checkpoint request. Upon receiving the request, each process takes

14 Chapter 1. Fault tolerance for parallel applications

its checkpoint and rebroadcasts the request before sending any more application
messages. The goal is to ensure that processes do not receive any message that
could make the global state inconsistent. However, in order for this to be true,
the communication channels need to be FIFO and reliable. When working with
non-FIFO channels, each process that has just taken its local checkpoint could pig-
gyback the checkpoint request on all further sent application messages, to counter
the possibility of the request being received out of order. Another option is to make
each process piggyback its current epoch1 in all sent messages. This automatically
noti�es other processes that a checkpoint has been taken upon receival of a message
with an epoch number higher than their own.

If the channel is reliable, coordinated checkpoint techniques ensure that no in-
consistencies take place upon recovery. However, in-transit messages still have to be
taken into account. If the communications channel is reliable, processes need to log
messages received after taking its local checkpoint but sent before the sender took
its own. If the communication channel were non-reliable, then in-transit messages
are equivalent to messages lost in channel errors, and therefore no further actions
need to be taken.

Using coordinated checkpointing, not only the failed processes must roll back, but
all processes involved in the computation have to do so as well. This ensures that all
events which a�ected the failed process after the checkpoint was taken are replayed.
In this case, �nding recovery lines is a very easy operation. Since all processes take
their checkpoints in a coordinated way, the last valid recovery line is composed of
the latest common checkpoints. Due to this, the garbage collection algorithm is
pretty straightforward, and simply consists of removing the oldest checkpoints when
newer ones are created.

Another variant involves taking checkpoints based on a coordinated clock [21].
Other authors proposed notifying only those processes which transitively depend on
the initiator [35]. The result is that not all processes participate in all checkpoints,
but rather, only those that present dependencies among themselves.

1In checkpointing terminology, an epoch is the interval between two given checkpoint actions.
Therefore, the computation can be divided in a series of numbered epochs.

1.3 Log-based approaches 15

1.2.3. Communication-induced checkpointing

Communication-induced checkpointing is based on piggybacking dependencies
information on application messages so that the domino e�ect and the creation
of useless checkpoints can be avoided. Processes are not coordinated, but rather
analyze the state of the global computation they have knowledge of and make de-
cisions about its local checkpoints in two di�erent ways. First, they may take local
checkpoints based on their own execution state as in uncoordinated checkpoint ap-
proaches. Second, they also take forced checkpoints depending on the global depen-
dencies state to avoid the domino e�ect and the existence of useless checkpoints.

The idea on which communication-induced is based are Z-paths and Z-cycles [44].
It has been proven that a checkpoint is useless if and only if it is part of a Z-cycle.
These approaches piggyback protocol information in application messages so that
processes are able to detect when they should take a forced checkpoint to avoid the
existence of useless ones. There are two basic approaches: model-based, which detect
Z-cycles and force checkpoints to eliminate them; and index-based, which timestamp
each local checkpoint on each process and piggyback these timestamps on application
messages so that each process decides whether or not to take forced checkpoints,
analyzing the timestamps received by other processes. These two approaches have
been proven to be fundamentally equivalent [33].

Communication-induced checkpointing is theoretically more e�cient and scalable
than coordinated checkpointing. However, this technique may indeed create check-
points that will not be used, and is extremely dependent on the message-passing
pattern of the application. This leads to unpredictable checkpoint rates, making the
approach di�cult to use in practice [23].

1.3. Log-based approaches

Log-based approaches consider the execution of a parallel application as a se-
quence of deterministic state intervals. Each interval begins with the execution of
a nondeterministic event, modeled as the reception of a nondeterministic message.
Nondeterministic events include application messages and other forms of nondeter-
minism such as generation of random numbers or reception of user events. By logging
nondeterministic events and relying on the PWD assumption, log-based techniques
guarantee that the recovered execution will exactly recreate the nondeterministic

16 Chapter 1. Fault tolerance for parallel applications

events that had already taken place. Since deterministic events generated by the
failed process (e.g. sent messages) will be recreated exactly as they had been in the
pre-failed execution, non-failed processes are guaranteed not to become orphaned by
the roll back of the failed processes and are never required to roll back themselves, as
opposed to checkpoint-based rollback-recovery. This is formalized in the no-orphans
consistency condition [7]:

Let Depend(e) be the set of processes that are a�ected by a nondeterministic
event e.

Let Log(e) be the set of processes that have logged the determinant of event
e in their volatile memory.

Let Stable(e) be a predicate that is true if e's determinant has been logged to
stable storage.

∀e : ¬Stable(e)→ Depend(e) ⊆ Log(e)

This means that, for any event e, if it is not logged in stable storage, then all
processes depending on it must have it available in their volatile memory. Indeed,
if a process depending on an event e could not access it via stable storage nor
volatile log, this process would be an orphan process, since it would depend on a
non-recoverable nondeterministic event.

These kind of approaches periodically create uncoordinated checkpoints in order
to reduce the amount of re-execution needed upon recovery.

There are basically three types of log-based protocols for guaranteeing that the
no-orphans consistency condition is true: pessimistic, optimistic and causal. They
are described in the following subsections.

1.3.1. Pessimistic log-based approaches

Pessimistic approaches synchronously log every nondeterministic event as soon as
it is generated, not allowing execution to resume until it is available in stable storage.
Therefore, they implement a stronger condition than the no-orphans consistency one.
It may be logically expressed as:

1.3 Log-based approaches 17

∀e : ¬Stable(e)→ |Depend(e)| = 0

That is, if a nondeterministic event has not been logged to stable storage, this
means no process depends on it.

These approaches have a main disadvantage: the overhead of synchronously log-
ging all received nondeterministic events. In order to reduce this overhead, which
makes the approach highly non-scalable, techniques such as using special logging
hardware [2] are used. Another option is delaying the logging until the process
communicates itself with any other process, an approach known as sender-based
pessimistic logging [34]. Depending on the communication patterns of the applica-
tion, this may log more than one event at the same time, therefore reducing I/O
overhead. This may be a problem when using reliable channels. If the process fails
before logging the received messages to stable storage, these will not be available to
it upon recovery.

In terms of garbage collection, these protocols require only the last stored check-
point to be kept for each process.

1.3.2. Optimistic log-based approaches

These protocols asynchronously log nondeterministic events [62]. Each process
keeps its determinants in a volatile log, which is committed to stable storage peri-
odically. These kinds of protocols have a good failure-free performance, although
they do not validate the no-orphans condition. Indeed, if a process were to fail,
having determinants in its volatile log not yet committed, all processes depending
on events generated by the failed process would become orphans, which requires
them to roll back. Thus, optimistic log-based approaches are very similar to unco-
ordinated checkpointing in case that a process fails without having committed any
determinant to stable storage. This results in complex recovery protocols, as well
as in a complex garbage collection. Moreover, if eventual stable log of determinants
is not guaranteed, the approach is subject to the domino e�ect.

18 Chapter 1. Fault tolerance for parallel applications

1.3.3. Causal log-based approaches

These protocols combine the advantages of both pessimistic and optimistic ap-
proaches. They are based on piggybacking the contents of each process's volatile log
in messages it sends, so the information is available on other volatile logs. Therefore,
surviving processes are able to help failed processes replay their pre-failed execution
in a deterministic way. By doing so, it is guaranteed that no orphan processes may
exist, and therefore no processes are forced to roll back other than failed ones. Their
drawback is the communications overhead introduced by the piggybacking of local
determinants on sent messages.

1.4. Implementation properties of rollback-recovery

protocols

Whether the protocol used is checkpoint-based or log based, all rollback-recovery
protocols create checkpoint �les as their fundamental recovery unit. It is the only
data available to processes in checkpoint-based approaches, and it allows log-based
protocols to e�ciently recover after a failure.

There are important properties associated with the actual way of creating state
�les that a�ect the performance and capabilities of real rollback-recovery tools. We
highlight three such properties: granularity, transparency and portability.

1.4.1. Granularity

This property determines the amount of data that the fault tolerance approach
stores as part of the checkpoint �les. In particular, it determines how much data,
compared to the total application data, the technique stores. There are two fun-
damental approaches to this; full checkpointing, consisting in storing the entire
application state, including structures such as the application stack or heap; and
variable-level checkpointing, which identi�es and selects variables which are needed
for restart and stores only those in the checkpoint �les. These are sometimes re-
lated to the level of abstraction at which the rollback-recovery is implemented. If
it is implemented on a system level, that is, on a higher abstraction level than
the application itself, it does not have any knowledge of the application internals.

1.4 Implementation properties of rollback-recovery protocols 19

Therefore, a variable-level analysis is not possible, and it must store the application
state entirely. Other approaches, implemented at application level, have access to
the application code and can modify it in order to introduce fault tolerance. These
have access to internal application information and can use it to their advantage.
Thus, all system-level rollback-recovery tools must perform full checkpointing, while
application-level checkpointers can choose whether to opt for variable-level check-
pointing instead.

The fundamental advantage of full checkpointing is that it treats an application
as a black box, without knowledge of its internals or previous analysis. It is, there-
fore, completely transparent for the programmer (see Section 1.4.2), as it can be
implemented at the operating system level or even in the hardware. However, it
has two important drawbacks. First, the literature has shown that the actual state
writing to stable storage is the largest contribution to the overhead of checkpoint-
ing [47]. Storing all application data will have a higher associated cost than storing
just necessary data. Not only that, but transferring bigger checkpoint �les over a
network will also have a higher cost. Second, checkpoints will lack portability (see
Section 1.4.3). Variable-level checkpointing, on the other hand, is able to obtain
better performance and may create portable checkpoint �les depending on its im-
plementation. The drawback is the need for complex analyses of the application
code in order to identify the state that needs to be stored.

• Incremental checkpointing

An optional improvement in both full and variable-level checkpointing is the use
of incremental checkpointing [4,25,29,50]. Under this approach, there are two types
of checkpoints: full and incremental. Full checkpoints contain all data that is to be
stored, while incremental checkpoints store only the data that has changed since the
last checkpoint. The recovery process uses the most recent available full checkpoint,
and then orderly applies the changes re�ected in the incremental ones to completely
reconstruct the process state. Creating more incremental checkpoints between each
full checkpoint improves the failure-free performance of the approach. Reducing it
improves recovery performance. A compromise must be reached, taking into account
the failure rate of the system.

When incremental checkpointing is applied to full checkpointing, it is usually
done at the page level, using hardware mechanisms to check which pages have
changed since the last checkpoint, and must be written in the incremental state

20 Chapter 1. Fault tolerance for parallel applications

�le. When applied at the variable-level, some kind of algorithm to detect changes
to individual variables must be applied. Therefore, incremental checkpointing will
have a higher impact in terms of runtime overhead when applied to variable-level
systems.

1.4.2. Transparency

This property refers to how the user perceives the fault tolerance solution. It
is loosely related to granularity, since it might be clear that a full checkpointing
scheme will be completely transparent for the users, while a variable-level one will
require them to provide application-speci�c information. However, there are hybrid
approaches that do not follow that rule. Some tools perform full checkpointing but
still require the user to select where checkpoints must be taken. Similarly, variable-
level approaches may employ code analysis and transformations to automatically
extract the information, behaving in a transparent way.

1.4.3. Portability

We say a checkpointing technique is portable if it allows the use of state �les to
recover the state of a failed process on a di�erent machine, potentially binary incom-
patible or using di�erent operating systems or libraries. The basic condition that has
to be ful�lled in order to achieve potential portability is not to store any low-level
data along with the process state. Therefore, all full checkpointing approaches are
non-portable. Note that not any variable-level approach will be portable, though.
Some implementations sacri�ce portability for simplicity. For instance, one imple-
mentation may store the program counter along with the application data in order
to simplify restart.

The second condition for a checkpointer to be portable is that all data is stored
in a portable format, so conversions may be made in case they are necessary for
recovering the process state on a binary incompatible machine.

1.5 Existing checkpointing tools 21

1.5. Existing checkpointing tools

A number of tools for checkpointing have been proposed in the literature, each
one with its own approach. This section describes the most relevant ones, detail-
ing what they miss, in our opinion, in order to be usable on modern computing
frameworks.

1.5.1. CoCheck

CoCheck [61] is a full checkpointing library for parallel applications based in
Condor [40]. It uses a coordinated checkpoint-based approach, with messages re-
questing checkpoints acting as initiators. It works under the assumption of FIFO
channels. Upon reception of a checkpoint request, each process stores the state of
its communication bu�ers and sends a request via all its communication channels.
Therefore, any in-transit messages will be in the communication bu�ers which are
stored along with the process state, removing the possibility of orphan processes.
No inconsistent messages exist since the approach is coordinated, and processes are
not allowed to send any new messages until their local checkpoint is completed.

The drawbacks of this approach are its coordinated nature, which hampers its
scalability, and the fact that it uses full checkpointing, which makes it unable to
work on heterogeneous environments and also results in lower e�ciency. Besides,
CoCheck depends on tuMPI, a speci�c MPI implementation. Therefore, the code
will not be portable to machines without tuMPI support.

1.5.2. CLIP

CLIP (Checkpointing Libraries for the Intel Paragon) [19] is focused on check-
pointing parallel applications written for Intel Paragon architectures. This is a
MIMD multicomputer that uses MPI or the Intel NX libraries for message-passing
communications. CLIP implements e�cient and simple solutions, but is heavily tied
to the Paragon architecture.

CLIP uses full checkpointing. However, it allows for dead memory regions to be
excluded from the checkpoint �le, which improves e�ciency. It requires the user to
specify checkpoint locations in the application code. This is required because the

22 Chapter 1. Fault tolerance for parallel applications

authors did not wish to modify the Paragon kernel, and so they needed to ensure
that checkpointing does not take place inside a communication or I/O call.

It implements the same coordination technique seen in CoCheck: all processes
are coordinated, FIFO channels are assumed and communication bu�ers �ushed.
These are stored at userspace, and communication calls are substituted for CLIP
versions which check that the requested message is not on the userspace bu�ers, and
delegate their execution on the original version if it does not �nd them. This solu-
tion, although it is implemented on top of the MPI implementation, does require the
library to have knowledge about how the communication bu�ers are implemented,
and is therefore architecture-dependent and not applicable in a heterogeneous envi-
ronment.

Portability is obviously not a design goal since the architecture is completely
Paragon-centric.

1.5.3. Porch

Porch [51] is a source-to-source compiler that translates sequential C programs
into semantically equivalent C programs which are capable of saving and recovering
from portable checkpoints. The user inserts a call to a checkpoint routine and
speci�es the desired checkpointing frequency. A compiler then makes source-to-
source transformations to instrument the operation. Its data hierarchy consists of a
shadow stack. This is a copy of the original runtime stack, which is built by visiting
each stack frame and saving its local variables, identi�ed at compile time. At the
same time, each active function is identi�ed and the call sequence is stored. The
computation state is recovered by replaying the original call sequence and restoring
each stack frame using the shadow stack's contents. The shadow stack is stored in
a portable format, called UCF (Universal Checkpoint Format).

Although this is a sequential approach, it is of fundamental importance in the
context of this thesis, since it introduces fundamental ideas and techniques for check-
pointing portability.

1.5.4. Egida

Egida [53] is a fault tolerance framework able to synthetize an implementation
of the desired rollback-recovery protocol by interpreting a speci�cation language to

1.5 Existing checkpointing tools 23

express its details. It facilitates rapid implementation of fault tolerance mechanisms
for MPI applications. Although it does not depend on any speci�c MPI implemen-
tation, it implements the fault tolerance at the communication level. Therefore, low
level changes to the MPI layer are needed before an application can take advantan-
tage of the synthesized modules.

1.5.5. Star�sh

In Star�sh [5], each MPI node runs a separate Star�sh daemon, which commu-
nicates with other daemons via the Ensemble group communication system [32].
These daemons are responsible for spawning application processes, keeping track of
applications health, managing the con�guration and settings of the cluster, commu-
nicating with clients, and providing the hooks necessary to provide fault tolerance.
Its modular system enables the use of di�erent checkpoint-based protocols, namely
uncoordinated and coordinated forms of checkpointing.

Since the checkpointing mechanisms is implemented at the OCaml virtual ma-
chine, and given that OCaml is platform-independent, it is able to operate in hetero-
geneous clusters despite doing full checkpoints. However, the use of OCaml is also
the biggest drawback of the approach. Interpreting bytecode does is less e�cient
than running native code. Doing full checkpoints also hinders performance. Besides,
it is limited to host languages interpretable by the OCaml VM.

1.5.6. MPICH-V2

MPICH-V2 [12] is a communications driver for MPICH. It provides transparent
fault tolerance by using the Condor checkpoint and restart capabilities. Therefore,
it uses full checkpointing with no support for portability and heterogeneous envi-
ronments.

This is a sender-based pessimistic logging approach. Each process stores a unique
identi�er and a timestamp for each message it receives. When it needs to rollback,
it checks this registry in order to identify the messages that need to be replayed,
and asks the original sender to do so. In addition to sending these messages, the
sender process knows that the receiver will never ask for any previous message, and
performs garbage collection on its sending log.

Although the process is e�cient, since it involves no process coordination, the

24 Chapter 1. Fault tolerance for parallel applications

scalability is hindered by the log-based approach. Performing full checkpointing does
not help e�ciency nor portability. The fact that it is implemented as an MPICH
driver forces all machines to implement it in order to obtain fault tolerance.

1.5.7. MPICH-GF

MPICH-GF [71] is an extension to MPICH-G2 (the Globus communications
driver in MPICH) which adds fault tolerance. It is a transparent approach using
full checkpointing. It uses coordinated checkpointing by using FIFO channels and
�ushing communication bu�ers upon receiving a checkpoint request from the initia-
tor. It implements collective communications through point-to-point actions, which
is une�cient. In fact, its overhead �gures range between a 10% for the instrumen-
tation and 20% if checkpointing is introduced.

1.5.8. PC3

The C3 system (Cornell Checkpoint Compiler) [13�15] is the base for PC3 (Por-
table C3) [26]. The user must insert checkpoint locations and a compiler is in charge
of orchestrating fault tolerance through full checkpointing. It is implemented on top
of MPI, and therefore does not need any speci�c implementation to be used in order
to obtain fault tolerance.

In order to obtain consistency, it uses a non-blocking coordinated protocol, piggy-
backing information into sent messages. Since it is on top of MPI, it cannot assume
the communications channel to be FIFO, since an application may decide to receive
its messages out-of-order. In order to solve this problem it implements a modi�ed
version of the Chandy-Lamport algorithm, which is also heavier. Particularly, it
converts collective communications into point-to-point ones, further damaging the
scalability of the approach.

This approach is currently restricted to C applications.

1.6. Proposal

This work introduces a compiler-assisted checkpoint-based tool for portable check-
pointing in parallel environments, called ComPiler for Portable Checkpointing (hence-

1.6 Proposal 25

forth, CPPC). It is composed of two cooperating systems: a library providing check-
pointing routines for parallel applications, described in Chapter 2, and a compiler
for automating the code transformations necessary in order to take full advantage of
the library, described in Chapter 3. This design combines some of the ideas explored
in this chapter with new ones focusing on achieving better qualitative and quanti-
tative results. This section describes its most important properties, techniques and
protocols in terms of the properties described in this chapter.

1.6.1. Spatial coordination

As discussed in Section 1.2.1, uncoordinated checkpoint-based approaches present
a clear advantage: the lack of coordination overheads. However, they are also sub-
ject to the domino e�ect, and are able to create useless checkpoints, that never
become part of valid recovery lines. It would be desirable to retain the e�ciency
and scalability obtained from not adopting complex runtime protocols while, at the
same time, guaranteeing the execution progress in the presence of failures. One way
to do so is to use spatially coordinated checkpointing. This is a form of coordinated
checkpointing that, instead of taking all checkpoints at the same time forming a
consistent global state, focuses on SPMD codes and ensures that all checkpoints are
created at the same code locations in a way that guarantees the consistency of the
recovered state.

The basic di�erence between parallel and sequential applications in terms of
consistent recovery is the existence of dependencies imposed by interprocess com-
munications. If a checkpoint is placed in the code between two matching communi-
cation statements, an inconsistency would occur upon recovery, since the �rst one
will not be executed. If it is a send statement, the message will not be resent and
becomes an in-transit message, also called in-�ight, missing, or late. If it is a receive
statement, the message will not be received, becoming an inconsistent message, also
called ghost, orphan, or early.

The proposal of spatially coordinated checkpointing implies identifying, at com-
pile time, code locations at which the non-existence of in-transit, nor inconsistent
messages is guaranteed. An example is shown in Figure 1.2. Let us de�ne a safe

point as a point in the code were it is guaranteed that no in-transit nor inconsistent
messages can exist. Let us assume that:

All checkpoints are placed at safe points.

26 Chapter 1. Fault tolerance for parallel applications

Figure 1.2: Spatial coordination for non-blocking coordinated checkpointing

All processes take the same number of checkpoints at the same safe points in
the code.

It is clear that, under these conditions, all checkpoints will take the same number
of checkpoints during their execution. Given two checkpoints ci,x, cj,y, let us de�ne
the consistency relation, ci,x ∼ cj.y, as a binary relation that is true whenever there
are no in-transit, nor inconsistent messages between processes i and j between their
x-th checkpoint and y-th checkpoint respectively. Then, by the de�nition of safe
point:

∀i, j, x : ci,x ∼ cj,x (1.1)

Let us de�ne the set of all checkpoints taken by each process i, Ω(i). Finding a
valid recovery line is as simple as �nding the checkpoint index x that veri�es:

∀i : ci,x ∈ Ω(i) ∧ @y/ (∀j : cj,y ∈ Ω(j) ∧ y > x) (1.2)

That is, a checkpoint with index x exists in the set of checkpoints available for
recovering all processes, and it is the greatest index to ful�ll that condition. By
Equation 1.1, the set {ci,x, i = 1, . . . , n} will form a valid recovery line for all
processes. According to Equation 1.2, it is also the most recent one. The garbage
collection algorithm will be equally simple. Processes can periodically communicate,
in an asynchronous way, their most recently created checkpoint. By simply storing

1.6 Proposal 27

the minimum received value for all processes, a process i may determine that any
checkpoint with an index lower than the minimum will not be part of any valid
recovery line in the future.

This approach has several advantages: it rules out both the possibility of the
domino e�ect, and the creation of useless checkpoints, without the need for any
speci�c protocol at runtime; checkpoints are taken in a completely scalable way, since
the number of processes does not a�ect in any way how chekpoints are created; no
assumptions are made about the properties of the communications channel, which
could be unreliable and/or non-FIFO without a�ecting the protocol.

The places at which checkpoints are to be created are statically determined by
the compiler, which needs to perform a static analysis to identify safe points and also
an analysis to determine which of the detected safe points are adequate locations
for checkpointing. The internals of these analyses are described in Chapter 3.

1.6.2. Granularity and portability

One of the most important design goals for CPPC is portability. With this
in mind, the possibility of performing full checkpointing is ruled out, since it is
inherently non-portable. CPPC uses a variable level approach, storing only user
variables in state �les. Furthermore, it only stores live variables, that is, those having
values which are necessary for state recovery. By restricting the amount of saved
data, checkpoint �les are made smaller and so checkpointing overhead decreases.
This also improves the performance of network transfers, if necessary.

The use of portable storage formats guarantees a consistent recovery of vari-
able data in binary incompatible architectures. However, upon restart not only user
variables need to be recovered, but also non-portable state created in the original ex-
ecution, such as MPI communicators, virtual topologies or derived data types. This
introduces the need for a restart protocol that regenerates the original non-portable,
non-stored state. CPPC uses selective code re-execution to achieve complete appli-
cation state recovery. Therefore, non-portable state is recovered by the same means
originally used to create it, making a CPPC application just as portable as the
original one: variables are saved using portable formats, while non-portable state is
recreated using the original code.

A piece of application code is de�ned as Required-Execution Code (REC) if it
must be re-executed at restart time to ensure correct state recreation. The recovery

28 Chapter 1. Fault tolerance for parallel applications

process consists of the selective and ordered re-execution of such blocks of code.
There are six types of RECs, that correspond to:

Initialization of the CPPC library.

Portable state recovery: done by the CPPC registration routines.

Non-portable state recovery: performed through re-execution of procedures
with non-portable outcome.

Restart completion tests: carried out by the checkpointing routine. It ensures
that the execution has reached the point where the checkpoint �le being used
for recovery was originally created, and that the application state has been
correctly recovered.

Conditional sentences: Conditional blocks which contain one or more RECs
need to be tested, since not all processes might have executed the enclosed
RECs in the original execution. For instance, consider an application that
performs �le I/O through one, and only one, of the parallel processes. I/O
operations will be enclosed in a conditional expression checking the process
ID inside the parallel application. At restart time, conditional expressions are
evaluated to ensure that each parallel process executes only RECs contained
in appropriate conditional branches.

Stack recovery: Calls to procedures which recursively contain (i.e. through
any number of nested procedure calls) one or more RECs. This rebuilds the
original application stack.

REC detection is completely automated by the CPPC compiler, which is able
to automatically �nd all described REC types. CPPC controls execution �ow when
restarting an application, making it jump from the end of an REC to the beginning
of the next one, and skipping non-relevant code. The result is an ordered execution
of selected state-recovering statements which, eventually, creates a replica of the
original application state.

1.7. Summary

This chapter describes the various alternatives for fault tolerance in parallel
applications in the literature. It is focused in MPI applications, since it is the

1.7 Summary 29

de-facto standard. We identi�ed rollback-recovery as a better approach to fault
tolerance than MPI extensions and modi�cation of MPI semantics, for it preserves
the MPI interface and adapts better to modern heterogeneous environments. The
two core approaches to rollback-recovery, checkpoint-based and log-based, have been
described, along with three fundamental properties of checkpoint �le creation: gran-
ularity, transparency and portability. Then, existing checkpointing tools have been
analyzed and categorized, outlining the drawbacks they present in the areas of scal-
ability, e�ciency and portability. As long as each of them has its unique advan-
tages, none manages to properly address all three problems at the same time. Fi-
nally, CPPC (ComPiler for Portable Checkpointing), the checkpointing approach
presented in this work, has been described, outlining its most important charac-
teristics and design decisions. It guarantees restart consistency through the use of
compile-time coordination, a manner of implicit process coordination that does not
require communications between processes to be performed at runtime. It provides
a portable operation by employing a restart protocol that enables portable recovery
of non-portable objects through selective code re-execution.

From this point on, we describe the implementation of the two fundamental
parts of CPPC in greater depth: the checkpointing library, and the source-to-source
compiler.

Chapter 2

CPPC Library

This chapter discusses the design and implementation details for the CPPC
checkpointing library, which provides all necessary routines for checkpointing. It is
implemented in C++, and its design follows the model-view-controller (MVC) [16]
design pattern in a way that allows the same core implementation to be used by
di�erent host programming languages. The model is structured in layers [16], decou-
pling each functional level from the rest. The following sections provide an in-depth
description of the library features, following a top-down approach that begins at
the application code (the view in the MVC design), describing what services the li-
brary provides and how it provides them, while traversing deeper into the framework
design, covering the controller and how it adapts external requests to the internal
model and, �nally, presenting the model and each of its layers.

2.1. View

In our MVC design, the view corresponds to the code of a parallel application
that uses CPPC in order to obtain fault tolerance. As in any MVC design, the view
is interchangeable so that the framework can service di�erent contexts. For CPPC,
this means allowing the same model to be accessed from di�erent programming lan-
guages. Speci�cally, interfaces for C and Fortran 77 have been implemented, but
specifying interfaces for any language supporting calculated gotos1 is straightfor-
ward. The need for calculated gotos is justi�ed later on, and exists due to restart

1A calculated goto is a goto whose target is an array-indexed address.

31

32 Chapter 2. CPPC Library

protocol implementation details (see Section 2.1.7).

Since the number and semantics of functions exposed to the view is constant,
they can be explained without referring to any speci�c implementation, except for
illustrative purposes, in which cases we default to the C version of the interface. The
following subsections describe the services CPPC provides to parallel applications
through its API, brie�y summarized in Table 2.1. CPPC has two operation modes:
checkpoint operation and restart operation. The checkpoint operation mode is used
when a normal execution is being run. It consists of marking relevant variables
(variable registration) and saving them into state �les at checkpoints in the code.
Restart operation mode emerges when the application must be restarted from a
previously saved checkpoint �le. Library functions will behave di�erently depending
on the current execution state.

2.1.1. CPPC initialization and shutdown

CPPC needs initialization operations to be performed before servicing most ap-
plication requests. The initialization operations must be spread amongst two dif-
ferent function calls. The �rst, CPPC_Init_configuration(), reads con�guration
parameters. Amongst others, it decides whether a restart is to take place. It should
be executed as soon as possible, so it can process and remove all CPPC command-
line parameters that should not become visible to the application itself, to avoid
syntax errors. In its C version, this call receives the command-line parameters and
their number, much like MPI_Init() does. After its execution, the library knows
whether or not to enable the restart protocol. If so, selective code re-execution
eventually directs the execution �ow towards the MPI_Init() call and, after it, to
the CPPC_Init_state() call. This second initialization function creates necessary
memory structures and, if a restart is taking place, calculates the recovery line and
makes restart data available to all parallel processes. Interprocess communications
are required in order to �nd the recovery line. Thus, the CPPC_Init_state() func-
tion must be called after the MPI subsystem has been initialized. This is the reason
to spread the initialization operation into two di�erent function calls.

As for the �nalization of the library, the CPPC_Shutdown() function must be
called to ensure a consistent shutdown. Besides removing unnecessary �les and free-
ing memory, this call ensures that any multithreaded checkpoint operation �nishes
before allowing the program to exit.

2.1 View 33

T
ab
le
2.
1:

In
te
rf
ac
e
su
m
m
ar
y
of

th
e
C
P
P
C
lib
ra
ry

F
u
n
c
ti
o
n

C
h
e
c
k
p
o
in
t
o
p
e
r
a
ti
o
n

R
e
s
ta
r
t
o
p
e
r
a
ti
o
n

C
P
P
C
_
A
d
d
_
l
o
o
p
_
i
n
d
e
x
(
)

N
ot
i�
es

C
P
P
C
th
at

th
e
ex
ec
u
ti
on

is
ab
ou
t
to

en
te
r
an

in
st
ru
m
en
te
d
lo
op

C
P
P
C
_
C
o
m
m
i
t
_
c
a
l
l
_
i
m
a
g
e
(
)

S
to
re
s
p
ar
am

et
er

va
lu
es

D
o
es

n
ot
h
in
g

C
P
P
C
_
C
o
n
t
e
x
t
_
p
o
p
(
)

N
ot
i�
es

C
P
P
C
th
at

a
fu
n
ct
io
n
h
as

re
tu
rn
ed

C
P
P
C
_
C
o
n
t
e
x
t
_
p
u
s
h
(
)

N
ot
i�
es

C
P
P
C
th
at

a
fu
n
ct
io
n
is
b
ei
n
g
ca
ll
ed

C
P
P
C
_
C
r
e
a
t
e
_
c
a
l
l
_
i
m
a
g
e
(
)

N
ot
i�
es

C
P
P
C
th
at

a
n
on
-p
or
ta
b
le
ca
ll
fo
ll
ow

s
C
P
P
C
_
D
o
_
c
h
e
c
k
p
o
i
n
t
(
)

D
u
m
p
s
st
at
e
�
le

C
h
ec
k
s
re
st
a
rt

co
m
p
le
ti
on

C
P
P
C
_
I
n
i
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
(
)

In
it
ia
li
ze
s
co
n
�
gu
ra
ti
on

C
P
P
C
_
I
n
i
t
_
s
t
a
t
e
(
)

In
it
ia
li
ze
s
st
at
e

In
it
ia
li
ze
s
st
at
e

F
in
d
s
re
co
ve
ry

li
n
e

R
ea
d
s
ch
ec
k
p
oi
n
t
�
le

C
P
P
C
_
J
u
m
p
_
n
e
x
t
(
)

R
et
u
rn
s
0

R
et
u
rn
s
1

C
P
P
C
_
R
e
g
i
s
t
e
r
(
)

C
re
at
es

n
ew

re
gi
st
er

R
ec
ov
er
s
d
at
a

R
ec
re
at
es

re
gi
st
er

C
P
P
C
_
R
e
g
i
s
t
e
r
_
d
e
s
c
r
i
p
t
o
r
(
)

C
re
at
es

n
ew

�
le
d
es
cr
ip
to
r
re
gi
st
er

R
ec
ov
er
s
d
es
cr
ip
to
r
st
at
e

R
ec
re
at
es

d
es
cr
ip
to
r
re
gi
st
er

C
P
P
C
_
R
e
g
i
s
t
e
r
_
p
a
r
a
m
e
t
e
r
(
)

S
to
re
s
p
ar
am

et
er

d
at
a

R
ec
ov
er
s
p
ar
am

et
er

d
at
a

C
P
P
C
_
R
e
m
o
v
e
_
l
o
o
p
_
i
n
d
e
x
(
)

N
ot
i�
es

C
P
P
C
th
at

th
e
ex
ec
u
ti
on

h
as

ex
it
ed

an
in
st
ru
m
en
te
d
lo
op

C
P
P
C
_
S
e
t
_
l
o
o
p
_
i
n
d
e
x
(
)

N
ot
i�
es

C
P
P
C
th
at

th
e
ex
ec
u
ti
on

h
as

st
ar
te
d
a
n
ew

it
er
at
io
n
in

an
in
st
ru
m
en
te
d
lo
op

C
P
P
C
_
S
h
u
t
d
o
w
n
(
)

W
ai
ts

fo
r
ch
ec
k
p
oi
n
ts

to
co
m
p
le
te

N
ot

u
se
d

F
re
es

m
em

or
y
u
se
d
b
y
C
P
P
C

C
P
P
C
_
U
n
r
e
g
i
s
t
e
r
(
)

D
el
et
es

ex
is
ti
n
g
re
gi
st
er

N
ot

u
se
d

C
P
P
C
_
U
n
r
e
g
i
s
t
e
r
_
d
e
s
c
r
i
p
t
o
r
(
)

D
el
et
es

d
es
cr
ip
to
r
re
g
is
te
r

N
ot

u
se
d

34 Chapter 2. CPPC Library

2.1.2. Variable registration

CPPC follows a variable level approach to checkpointing. This means that the
application code must explicitly mark the variables that are to be stored in state �les.
We call this process variable registration. The function used to register a variable
is CPPC_Register() which, in its C version, receives the following parameters:

Base address: The base memory address of the variable to be registered. For
C scalar variables, the address-of operator (&) should be used.

Number of elements: How many elements of type speci�ed through the third
parameter are being registered.

Data type: Since portability is one of the top CPPC priorities, stored data
needs to be labelled in a way that allows for conversions to be performed if
necessary. Besides, this labelling should be independent of the host program-
ming language or the communications system used (MPI provides its own data
type codes). Thus, CPPC de�nes constant values associated to the basic data
types to be registered. For instance, registration of character types is done us-
ing CPPC_CHAR, CPPC_INT is used for integers, etc. When implementing views
for languages supporting overloaded methods the use of labels would not be
necessary. Instead, a di�erent function could be used for each data type.

Register ID: The base address is generally not unique for di�erent variables
(e.g. memory aliasing in C). Thus, each register is uniquely identi�ed by a
string. Any string that is unique for each function scope is valid. Therefore,
the use of the variable name is recommended.

Memory type: A boolean value, indicating whether the memory to be reg-
istered is static (scalar variables and arrays) or dynamic (pointers). This is
relevant when recovering the variable value, as will be further explained. This
parameter is not present in languages such as Fortran 77 (which uses static
memory only) or C++ (where partially instantiated [6] template functions [63]
can be used to detect the di�erence).

The register function behaves in a di�erent way when the execution is being
recovered from a state �le. If called in this situation, it will not only perform the
registration, but also recover the original data found in the checkpoint �le. When
processing static variables, these data are copied to the memory allocated for them

2.1 View 35

by the compiler. For dynamic variables, the function returns a pointer to a memory
address containing the data. For instance, assume that an array containing 100
integers named �data� is to be registered in a C application. The registration call
syntax would be:

CPPC_Register(data, 100, CPPC_INT, "data", CPPC_STATIC);

In a regular execution, the address of the data array is registered for future
storage, containing 100 integers (the actual size in bytes depends on the computing
platform and is calculated internally). When the application is restarted, calling
this function recovers the original array values by copying them into the compiler-
allocated memory. Also, as in a normal execution, a register for the variable is
created. If data were not an array, but a pointer containing 100 integers, the
registration call would be:

data = CPPC_Register(data, 100, CPPC_INT, "data", CPPC_DYNAMIC);

Where the return value to the variable, and the memory type parameter indi-
cates that this register involves dynamic memory. Upon application restart, the call
returns a memory address containing the original data, instead of replicating them
into the allocated memory.

A CPPC_Unregister() function is also provided for the removal of obsolete vari-
able registers. Variables that have lost relevance are excluded from future check-
points, thus optimizing state �les sizes.

2.1.3. Non-portable calls

As seen in Section 1.6.2, CPPC uses selective code re-execution in order to recover
non-portable state. Function calls having a non-portable outcome are re-executed
when recovering an application using the same parameter values as in the original
execution. The CPPC library provides functions that store parameter values in
order to allow for proper re-execution. Before performing a non-portable invocation,
a call to the CPPC_Create_call_image() function is issued. The parameters for this
function are its line number in the code and the name of the function itself. This
pair uniquely identi�es a speci�c non-portable call. Note that simply using the line

36 Chapter 2. CPPC Library

number as identi�er would not su�ce, since a line in the code may contain more
than one non-portable call (e.g. by using the return value of a non-portable call as
a parameter for another non-portable call). Internally, CPPC creates a frame for
the parameters to be stored, named call image.

After creating the call image frame, parameters that are required to preserve
their values upon restart are passed to a special version of the registration func-
tion, called CPPC_Register_parameter(), which receives the same parameters as
CPPC_Register(). The di�erence between both is that a registered parameter is
associated to a call image, rather than to a procedure scope. After registering all
required parameters, the CPPC_Commit_call_image() function stores the call image
for inclusion in subsequent checkpoint �les. A typical example of use for instrument-
ing an MPI_Comm_split() call would be:

CPPC_Create_call_image("MPI_Comm_split", line_number);

CPPC_Register_parameter(&color, 1, CPPC_INT, "color",

CPPC_STATIC);

CPPC_Register_parameter(&key, 1, CPPC_INT, "key",

CPPC_STATIC);

CPPC_Commit_call_image();

MPI_Comm_split(comm, color, key, comm_out);

When restarting the application, the execution �ow is directed towards this REC,
and the values for color and key are recovered. Note that the original communicator
comm is not registered, on account of it being a non-portable object. Either its value
is recovered by a previous execution of a non-portable call, or it is a MPI-de�ned
constant, such as MPI_COMM_WORLD. Eventually, the non-portable call is executed
in the same conditions as in the original run, thus having the same semantic out-
come: a new communicator comm_out, containing the processes in comm with the
same value of color, ranked attending to the values of key. Note that the speci�c
MPI implementation used for restart could be di�erent from the one used in the
original run, and the outcome would be semantically correct in the new execution
environment.

The basic functional di�erence between a regular variable register and a call im-
age parameter is that in the former the variable address is saved and its contents
stored when the checkpoint function is called. The value of call image parameters,
however, is stored in volatile memory when CPPC_Commit_call_image() is invoked,

2.1 View 37

and included in all subsequent checkpoint �les. There is no way to remove a parame-
ter registration, since a non-portable call never stops being relevant to the execution
in CPPC's scheme.

2.1.4. Context management

The previous sections showed some of the data that CPPC includes in check-
point �les, namely variable registrations and call images. However, in order to
correctly categorize each recorded piece of data into its correct scope, the CPPC
library must be able to keep track of execution context changes. In order to do
so, it internally manages a context hierarchy. Each context object represents a
call to a procedure, and contains the information required for recovering data in
that procedure scope. Contexts contain variable registers, call images, and also
other subcontexts, created by nested calls to the same or other procedures. This
hierarchical representation allows for the sequence of procedure calls made by the
original execution to be recreated upon restart. In this way, the application stack
is rebuilt, and the relevant state is recovered inside its appropriate scope. This hi-
erarchical representation allows for the application stack to be rebuilt upon restart,
by recreating the sequence of procedure calls made by the original execution, while
recovering the relevant state inside each procedure scope. This heap-shaped hierar-
chy generalizes any pattern in procedure calling, including recursivity. Two CPPC
library routines, CPPC_Context_push() and CPPC_Context_pop(), are used to no-
tify context changes. These calls are only inserted before and after a call to a
CPPC-instrumented procedure, respectively. A CPPC-instrumented procedure is
any procedure containing CPPC code, be it registers, call images, checkpoints, or
simply calls to procedures containing any of these.

There is another situation that requires tracking by the library, and that is the
insertion of non-portable calls inside loops. If this happens, the non-portable call
will be repeated a certain number of times, and a di�erent call image must be
created for each invocation. Moreover, CPPC must provide means to re-execute
the non-portable section of the loop when recovery takes place. For this purpose,
the CPPC_Add_loop_index(), CPPC_Set_loop_index() and CPPC_Remove_loop_-

index() functions are provided. Their purpose is to create a special type of context,
called a loop context, which may only contain call images. Other types of registra-
tion performed while inside the loop will be automatically inserted into the �rst
predecessor node that represents a regular execution context. The following code is

38 Chapter 2. CPPC Library

a simple example of use of this type of context:

CPPC_Add_loop_index("i", CPPC_INT);

for(i = 0; i < n; i++) {

CPPC_Set_loop_index(&i);

/* non-portable calls go here */

}

CPPC_Remove_loop_index();

Loop contexts need only be inserted on loops containing non-portable calls. Reg-
ular variable registrations, checkpoints, or other CPPC operations potentially placed
inside a loop do not need any special modi�cations to their environment.

2.1.5. Open �les

Files are characterized as being random access data�ows, with a state de�ned
not only by their data or path, but also by a pointer to the current position inside
the data stream. This position must be recovered when reopening takes place. The
CPPC_Register_descriptor() function is used to track open �les. It receives a
unique identi�er for the descriptor (an integer), the base address for the descriptor
itself, the type of the descriptor being passed, and the path of the �le being opened.
An example of use:

fd = open(path, mode);

CPPC_Register_descriptor(id_number, &fd, CPPC_UNIX_FD, path);

During a regular execution, the register descriptor function marks the �le as
open, so that relevant information about the descriptor, including the position of
the stream pointer, will be stored when a checkpoint is reached. When recovering
the application, the library re-executes the open function and then the register func-
tion, which in this context ensures that the stream pointer is correctly repositioned.
The CPPC_UNIX_FD parameter tells the library that a regular UNIX �le descriptor,
represented as an integer, is being registered. Another valid value for the descriptor
type is CPPC_UNIX_FILE, used for FILE * descriptors. More register types can be
added to the library by implementing the appropriate handlers and functionalities
inside the �lesystem abstraction module (see Section 2.3.4).

2.1 View 39

A CPPC_Unregister_descriptor() function is also provided to remove descrip-
tors after their associated �le has been closed, e�ectively removing any further ref-
erence to it on future checkpoint �les.

2.1.6. Checkpoint �le dumping

As mentioned in the previous chapter, calls to the checkpoint function, CPPC_-
Do_checkpoint(), must be introduced at safe points, where no in-transit nor incon-
sistent messages between processes exist. From the application's perspective, this
call simply receives a unique integer parameter which is used to identify the point
in the code where the state dumping is performed, so that it is distinguishable from
other checkpoints performed in the same execution context, allowing the correct
identi�cation of the restart point during the recovery process.

2.1.7. Application restart

The restart phase has three fundamental parts: �nding the recovery line, read-
ing the checkpoint data into memory, and recovering the application state. The
�rst two steps are encapsulated inside the CPPC_Init_state() call. However, the
actual reconstruction of the application state and repositioning of control �ow must
be reached through the ordered execution of the RECs in the application (see Sec-
tion 1.6.2). For this purpose, jump labels are inserted into the appropriate positions
in the code, and a structure indexing these labels is de�ned. In the C interface, this
structure is an array of ordered jump addresses (void * values) for the di�erent
labels. The restart process consists of jumping from the end of an REC block to the
beginning of the next one, executing its code and jumping again. This process is
repeated until the library determines that the restart has �nished and that a regular
sequential execution of the code can be enabled. The C function the application
uses to query for the restart state is CPPC_Jump_next(). It returns 0 if no restart
is being performed, and a di�erent value otherwise.

Note that jumps must be performed inside the application code without leaving
the current procedure scope. Otherwise, the call stack would be inconsistent for the
target scope. Also note that there is no more elegant solution than the use of gotos,
since RECs can be found at any point or nesting level inside the code, discarding the
use of switch constructs. In this situation, the use of arrays indexing local jump

40 Chapter 2. CPPC Library

addresses is a safe and coherent solution, as long as it is guaranteed that said arrays
are not passed as parameters between functions, which CPPC does not do.

Jumps used to reach a REC from the end of another one are called conditional

jumps, since they are taken inside an if structure controlled by CPPC_Jump_next().
Their code is as follows:

if(CPPC_Jump_next()) {

int jump_counter = cppc_next_label++;

goto *cppc_labels[jump_counter];

}

Jump labels and conditional jumps are inserted enclosing all the six types of
RECs: library initialization, portable state recovery (variable registration), non-
portable state recovery (execution of calls with non-portable outcome), restart com-
pletion tests (done by the checkpoint function), conditional sentences and stack re-
covery (execution of calls to CPPC-instrumented functions). For some of these REC
types, however, the control �ow instrumentation varies slightly. The CPPC_Init_-

configuration() call starts the jump sequence and is usually the �rst statement
in the code, and therefore does not include a jump label before it. Also, conditional
sentences and stack recovery require a more complex version of the control �ow
instrumentation, as detailed in the following paragraphs.

Calls to CPPC-instrumented procedures must be re-executed during restart. For
this purpose, CPPC_Context_push() and CPPC_Context_pop() are placed enclosing
the call, which is itself executed as well. Internally, control �ow code is added as
previously explained, but with the �rst statement in the procedure being a condi-
tional jump towards the �rst REC inside its code, and with the last conditional jump
reaching a generic return instruction. Note that the generic return does not a�ect
the state recovery process. If the returned value is stored into a relevant variable,
then this variable will be registered after the call, and its correct value recovered.
Otherwise, the returned value is discarded or stored into a non-relevant variable. In
both cases, the generic return cannot a�ect the execution outcome.

Adding control �ow code to an instrumented conditional sentence is similar to
doing so to instrumented procedures, just more complex. The conditional expression
must be re-evaluated to ensure that each parallel process executes the proper branch.
Variables involved in the computation of the control expression are registered as if

2.2 Controllers 41

they were used in a non-portable call, using the call image-related functions previ-
ously detailed. Thus, it is guaranteed that the evaluation of the control expression
is consistent with the original one. Each conditional branch is then modi�ed so that
its �rst statement is a conditional jump towards the �rst REC in that branch. At
the end of each branch, a conditional jump is placed that directs the process to the
next REC outside the conditional construct. These particular conditional jumps
are di�erent from the regular ones in that they do not increase the jump counter
by one, but by an amount dependent on the number of RECs between the current
position and the desired target. For instance, the �rst conditional jump in the then
branch of an if statement will increase the jump counter by one. However, the last
conditional jump in that branch will increase the counter by the number of RECs
contained in the else branch plus one. Similarly, the �rst jump in the else branch
increases the counter by the number of RECs contained in the then branch plus
one, while the last one increases the counter by one. This example can be easily
generalized for other conditional constructs, such as switch.

The presented restart protocol ful�lls the portability objective in CPPC. It does
not directly modify non-portable state such as the program counter or the appli-
cation stack, but instead uses the application code itself to perform required mod-
i�cations using workarounds. It does not impose non-portable constraints such as
recovering the variables in the same memory addresses as in the original run. It also
is implementable on a wide range of programming languages. Although required
code modi�cations may seem cumbersome and nontrivial, they are all automatically
performed by the CPPC compiler described in the next chapter.

2.2. Controllers

To connect the di�erent views with the library model, CPPC's API is imple-
mented into controllers that abstract the particularities of the chosen programming
language and translate the requests to the set of C++ functions implemented by the
model. Each controller performs di�erent actions depending on its target language.
This section covers the controller connecting the model with C views. Given the
similarities between this language and C++, the controller is extremely simple. The
three fundamental remarks about its implementation are:

For connecting C and C++, the taken approach is to implement the controller
in C++ declaring their functions as extern "C". Thus, the compiler generates

42 Chapter 2. CPPC Library

C function signatures, which may be linked with the parallel application.

Inside the functions declared as extern "C" the controller interacts with the
model façade. Said façade is a singleton2 that exposes a series of operations
almost identical to those seen in Table 2.1. The controller perfoms type
conversions, such as converting C-style strings (char *) to the C++-style
std::string.

Since repositioning a �le stream pointer is an operation which depends on
the host programming language, it cannot be implemented inside the model.
Instead, controllers are responsible for this task. The C version of the controller
keeps track of the set of registered �le descriptors and, upon restart, gets
the appropriate �le o�set from the model and repositions the pointer stream
using the �lesystem abstraction interface found in the portability layer (see
Section 2.3.4).

2.3. Model

The core implementation of the CPPC library functionality is found inside the
model. Figure 2.1 o�ers an overview of the framework design. The model is struc-
tured in layers which decouple each functional level from the rest. It o�ers a façade
which serves as centralized access point, implementing one function for each of the
ones exposed in the interface. Under it there is a checkpointing layer, which receives
a checkpoint �le in a speci�c format and implements protocol-dependent operations.
Then it passes the data to the writing layer, which is an interchangeable piece of
software in charge of writing and reading checkpoint �les to and from stable stor-
age. There are two additional layers: a portability layer, which abstracts operations
which depend on operating system services; and a utility layer, which provides im-
plementations of useful operations, such as data compression or integrity checks,
which are commonly used by the other layers. All these are described in subsequent
subsections. Note that, at this level, the library code is completely independent of
the controller (C, Fortran 77, etc.).

2In object-oriented programming, a singleton is an object programmed using a design pattern
that characterizes a class by exposing a single access point to its instances. This access point must
guarantee global accessibility and the existence, at any given time, of a single instance of the class,
which is returned in each invocation. There are many variations of this pattern depending on the
goals to be achieved. For more information see [6, 28].

2.3 Model 43

Figure 2.1: Global design of the CPPC framework

2.3.1. Façade

This layer orchestrates all the model behavior, while o�ering an external interface
to the controller. It implements the following functions:

• CPPC_Init_configuration()

This function initializes the library con�guration. CPPC implements a con�g-
uration manager that centralizes the access to di�erent con�guration sources into
a single interface that abstracts this functionality. Due to the modular design of
CPPC, the naming convention for con�guration parameters is hierarchical, each
level referring to a speci�c module or layer. How parameter names are constructed
depends on the source of each of them, but the �rst level is always CPPC. The con-
�guration manager adopts the following rules for parameter naming:

1. Command-line parameters: hierarchical levels are separated using the �/� char-

44 Chapter 2. CPPC Library

acter. For instance, the parameter controlling whether a restart is to take place
is named CPPC/Facade/Restart.

2. Environment parameters: Environment variables cannot contain the �/� char-
acter. Thus, �_� is used for separating hierarchy levels. The restart parameter
as de�ned by an environment variable is called CPPC_Facade_Restart.

3. Con�guration �les: A convenient way to specify parameters which remain con-
stant through many executions. A simple DTD3 has been created to describe
an XML scheme for con�guration �les. There are basically two types of tags:
variables, which have a name and a value; and modules, which may contain
variables and other modules. A simple example of con�guration �le de�ning
the restart parameter would be:

<cppc>

<module name="Facade">

<variable name="Restart" value="false"/>

</module

</cppc>

The library is also able to accept con�guration �les in plain format in case no
XML parser is available in the computing platform. In this case, the naming
convention is the same as that of command-line parameters, and a simple �le
containing the restart parameter would look like:

CPPC/Facade/Restart=false

Some common con�guration parameters are described in Table 2.2. However,
since con�gurable plugins having their own con�guration options may be dynami-
cally added to the CPPC library, this is not a comprehensive list.

• CPPC_Init_state()

Once CPPC has been con�gured, it can initialize its working environment. First,
it creates a directory for state �le storage. To support shared �le systems (common-
place in clusters), a directory tree is created:

3A DTD, or Document Type De�nition, is an XML schema language primarily used for the
expression of a schema via a set of declarations that describe a class, or type of document, in terms
of constraints on the structure of that document.

2.3 Model 45

Table 2.2: CPPC con�guration parameters
Module Parameter Description

Facade

RootDir
Directory where CPPC will store and
fetch checkpoint �les.

ApplicationName
Subdirectory of �RootDir� where
checkpoint �les will be e�ectively
stored.

Restart

Controls whether the application
must be restarted. It is recommended
to set this to �false� and enforce
restart using command-line parame-
ters.

Frequency
Number of calls to CPPC_Do_-

checkpoint() between e�ective
state dumping.

CheckpointOnFirstTouch

If set to �true�, the state dump-
ing will be performed every �rst
time that a particular call to
CPPC_Do_checkpoint() is reached.

Su�x Su�x for the generated �les.

StoredCheckpoints
Maximum number of checkpoint �les
stored per node before beginning dele-
tion of older ones.

DeleteCheckpoints
If set to �true�, stored checkpoints
will be removed upon successful ex-
ecution.

Compressor Type
Type of compressor used. See Sec-
tion 2.3.5.

Writer Type
Type of writer used. See Sec-
tion 2.3.3.

Checkpointer Multithreaded
Use multithreaded dumping. See Sec-
tion 2.3.2.

46 Chapter 2. CPPC Library

Level 1. One folder to store all CPPC applications data. E.g. /tmp/CPPC_Files.

Level 2. Inside the �rst level, a folder for each application. The name of
this folder is determined by the application identi�er de�ned through the
CPPC/Facade/ApplicationName parameter seen in Table 2.2. For instance,
an application named DBEM would �nd its �les under /tmp/CPPC_Files/DBEM.
Automatically determining the application name using the �rst command-line
parameter was discarded, since:

• Executing an application on queues makes the application name variable
depending on its PID4. Thus, an application being re-executed with a
di�erent PID will not �nd old checkpoint �les created during a regular
execution. Besides, if the aforementioned problem did not exist, two
di�erent executions of the same application would try to share the same
folder name, leading to consistency problems.

• Not all programming languages accept comand-line parameters. Fortran
77, for instance, does not de�ne a standard for accessing them (although
most compilers provide their particular way to do so).

Level 3. Finally, a folder per process. Each one of them may obtain a unique
identi�er in the context of the parallel application execution as their rank5 in
the MPI_COMM_WORLD communicator. Thus, a process with rank 4 executing a
CPPC application would store its �les under /tmp/CPPC_Files/DBEM/4/.

If it is not necessary to restart the application from a previously created check-
point (depending on the CPPC/Facade/Restart parameter), the initialization pro-
cess has �nished, and the control �ow returns to the parallel application. Otherwise,
a valid recovery line has to be found.

To determine which �les should be selected for restarting, each process must
check which checkpoint �les are available to it, and communicate with the rest to �nd
the most recent �le common to all processes. Since it is guaranteed that all processes
take the same number of checkpoints, �les with the same name6 in di�erent processes
correspond to the same point in the execution of the application. Since no in-transit
nor inconsistent messages existed upon creation, the set of homonym checkpoint �les

4PID, or process identi�er, is a number used by some operating system kernels (such as that of
UNIX, Mac OS X and Windows NT) to uniquely identify a process.

5MPI assigns each process an integer which uniquely identifes it in a communicator.

2.3 Model 47

A = Available state files, ordered by

unique file code

agreement ← false

While not agreement

N ← Newest correct state file in A

If all processes propose N then

agreement ← true

Else

O ← Older restart point proposed

NO ← {x ∈ A / x is newer than O}

A ← A-NO

End If

End While

Delete files older than N

Figure 2.2: Pseudocode of the algorithm for �nding the recovery line

forms a strongly consistent global state. A pseudocode of the algorithm for �nding
a valid recovery line is shown in Figure 2.2.

Once the recovery line has been found and each process knows which �le it
must use for restart, it reads its contents into memory. These data are ready to be
recovered as the application progresses through its RECs.

• CPPC_Shutdown()

This function �nalizes the library, leaving it in a consistent state. First, it ensures
that the model being shut down was previously initialized through calls to the ini-
tialization functions. Then, if that �rst check succeeds, it noti�es the inferior check-
pointing layer that a shutdown is taking place, so that it may take appropriate ac-
tion. This may involve waiting for any multithreaded checkpoint operations to �nish
before proceeding. After that, it evaluates the CPPC/Facade/DeleteCheckpoints

con�guration parameter. If set to true, it removes all generated checkpoint �les, and
begins traversing the directory hierarchy built by CPPC_Init_configuration(), re-
moving all empty directories, until it �nds a non-empty one or removes the hierarchy

6CPPC assigns �le names incrementally, beginning at 0, and increasing for each newly created
checkpoint �le.

48 Chapter 2. CPPC Library

root. Since the �lesystem interface is not standard in C++ (classes for �le access are
provided, but not for folder manipulation), CPPC includes an abstraction layer for
�lesystem access to facilitate the portability of the library. The implementation of
this layer is operating system-dependent. For more details, see Section 2.3.4. After
these steps have been taken, the façade instance is destroyed, library memory freed,
and the application is ready to exit.

• CPPC_Register()

This function is in charge of variable registration: scheduling memory regions
to be stored in subsequent checkpoints. This function behaves in a di�erent way if
called during a regular execution or during recovery.

During a regular execution, the façade is responsible for managing the set of
registers performed by the application. Thus, when this function is called, a new
register is added to this set as a structure containing its base memory address; the
end memory address; the data type, which may be necessary in order for inferior
layers to correctly store it; and the register name. If the name con�icts with another
one in this execution context, the register will not be created. For this reason, as
previously stated, the use of the variable name is recommended (no two variables
with the same name may exist in the same procedure scope).

In order to calculate the end memory address from the base address, the data
type and the number of elements of the register (which are the parameters provided
to the function), it uses another of the services provided by the portability layer, in
this case a data type manager, that through partial template instantiation is able
to provide a single C++ implementation to functionalities such as obtaining the
size of a data type, independently of the architecture on which the library has been
compiled.

If the application is being restarted, however, it is necessary to recover the data
originally stored in the registered memory and restore them to the place where the
application expects to �nd them. Since the checkpoint �le contents were recovered
when CPPC_Init_state() was called, the only thing to be done at this point is to
make said contents reachable for the application. If the variable being registered is
static, the library copies the stored data to the base address provided. Otherwise,
it returns a pointer to the appropriate memory address, that the application may
assign to the registered pointer variable. After data recovery is �nished, the library

2.3 Model 49

recreates the old register as a regular execution of this call would.

• CPPC_Unregister()

This is one of the simplest functions in the façade. It receives a register name
and removes the corresponding match from the set of existing registers. Note that
the memory address does not uniquely identify a register, since aliasing between
variables may cause di�erent registers to start at the same memory address.

• CPPC_Create_call_image()

This function call creates a new call image object for inserting required parameter
registrations. During a recovery, the function also fetches the old call image from the
state �le in order to subsequently recover the aforementioned parameters' values.

• CPPC_Register_parameter()

At the façade level, this function does not di�er much from the regular variable
registration. The only di�erence is that the register is inserted inside the object cre-
ated by the last CPPC_Create_call_image() function, instead of being associated
to the current execution context. During restart, the function reads the register
from the recovered call image and recovers the parameter value.

• CPPC_Commit_call_image()

When a normal execution is run, the commit function performs aliasing checks
(see the CPPC_Do_checkpoint() section) on the registered parameters inside the
associated call image and stores their values in volatile memory to be stored at
subsequent checkpoints. During restart, it simply removes the old call image object,
which should be now empty after all contained parameter registrations have been
recovered.

50 Chapter 2. CPPC Library

• CPPC_Context_push()

Called when the execution is going to perform a call to a function containing
CPPC instrumentation. During a normal execution, it creates a new execution
context object and adds it to the context hierarchy in the façade under the current
one. After that, it assigns the current execution context pointer to reference the
newly created one. During restart, the function handles two di�erent homomorphic
hierarchies: besides the regular one, the saved context hierarchy is recovered from
the checkpoint �le and traversed as the execution progresses. The façade maintains
two di�erent pointers to current execution contexts: one for the current execution
hierarchy, and another one for the one recovered from the state �le, which contains
all registers, call images, and checkpoints taken during the original execution.

• CPPC_Context_pop()

Called when the execution has returned from a call to a CPPC-instrumented
function, it updates the execution context pointer to reference the parent of the ex-
isting one. Additionally, if the context the execution is leaving is empty (it contains
no registers, checkpoints, call images, or subcontexts), it destroys the object, so that
it is not saved to subsequent checkpoints. During a restart, this call also updates
the pointer to the current context in the hierarchy recovered from the state �le.

• CPPC_Register_descriptor()

This function adds an entry to the set of open �les to be recorded at subsequent
checkpoint �les. It does not perform any kind of stream pointer positioning at
restart, which is the responsibility of the view as previously explained.

• CPPC_Unregister_descriptor()

Removes an entry from the set of current open �les.

• CPPC_Do_checkpoint()

This is another function with a behavior that depends on whether a normal
execution or a restart is being done. In the �rst case, its purpose is to initiate the

2.3 Model 51

state �le creation. There are some con�guration parameters that a�ect the outcome
of this operation. First, it is possible to de�ne a checkpointing frequency. It is
speci�ed as the number of calls to the CPPC_Do_checkpoint() function before an
actual checkpoint takes place. If CPPC/Facade/Frequency equals N, then the state
�le dumping will only be performed each N calls to this function. This parameter is
intended to be used in computational loops containing checkpoint calls.

Alternatively, it is possible to de�ne another parameter that forces checkpoints
to be taken the �rst time the execution reaches them. This option is included to
avoid skipping checkpoints outside computational loops. These are usually placed at
in�ection points in parallel programs, where a task has been �nished and a new one
is going to begin. Usually, after a computation phase is �nished its partial results
are available to be stored while auxiliar variables used for intermediate results are
not relevant anymore, thus reducing state �le sizes.

Summarizing, a checkpoint will be taken if: (a) the number of calls is a multiple
of the frequency parameter; or (b) it is the �rst time that a particular checkpoint is
reached in the code.

After deciding that a checkpoint �le has to be created, the �rst thing the façade
does is to perform aliasing checks on all existing registers. It does so by traversing
the context hierarchy structure, starting at its root (the context associated to the
main procedure), and analyzing all registers in each context. During this operation,
the function creates a list of memory blocks to be stored in the checkpoint �le.
For each register, it analyzes its beginning and end memory addresses and compares
them to the addresses of other registered variables. If no overlap exists, it schedules a
new memory block for inclusion in the checkpoint �le, corresponding to the memory
assigned to the analyzed register. Otherwise the smallest memory block containing
all overlapping registers' memory is calculated. Thus, a single memory block in
the checkpoint �le may be assigned to multiple registered variables. The result
of this calculation is the basic checkpoint �le format depicted in Figure 2.3. As
can be seen, each state �le is divided in two di�erent parts: a metadata section
and an application data section. The application data section contains the memory
blocks copied from the application memory, which hold the relevant data necessary
for restart. The metadata section contains information for the correct recovery
of the application memory: the execution context hierarchy, containing variable
and parameter registrations. The �gure omits call images for simplicity, since they
are similar to execution contexts, but containing parameter registrations only. For
each variable to be recovered, execution contexts store information about its type,

52 Chapter 2. CPPC Library

Figure 2.3: Data hierarchy format used for writing plugins

associated memory block in the application data section, and o�sets to calculate
the beginning and end of its data inside that memory block. The use of portable
o�sets instead of memory addresses [64] enables pointer portability. The o�sets are
calculated taking into account the original address for the registered variable and the
address for the corresponding block in the application data section. Upon recovery,
the memory block will be loaded into memory, and memory addresses for variables to
be recovered will be back-calculated using the stored o�sets. This preserves aliasing
relationships through application restarts.

Note that, while CPPC provides a mechanism for dynamically plugging new
writing modules, which perform the data writing to stable storage (see Section 2.3.3),
all of them must accept this checkpoint �le format as input.

If an execution is being restarted, this function does not perform checkpointing.
Rather, the library tests two conditions: (a) that this is the execution context where
the checkpoint �le used for restart was created; and (b) that this is the exact point
inside the procedure code where it happened. If both are ful�lled, the restart is
over, conditional jumps are deactivated, and the parallel application will be allowed

2.3 Model 53

to normally resume its execution.

• CPPC_Jump_next()

As mentioned when discussing the library views, the purpose of this function is
to notify the application as to whether a restart or a normal execution is taking
place. It returns a boolean value indicating the current state. The application uses
this return value to control conditional jumps.

2.3.2. Checkpointing layer

The façade implements most of its functionality through di�erent sublayers. Pre-
cisely, it uses the checkpointing layer and some of the functionalities o�ered by the
portability layer.

The checkpointing layer provides access points for managing the creation of the
checkpoint itself. The façade handles, basically, execution contexts, call images,
and variable and parameter registrations. When the time comes to include those
in a checkpoint �le, it uses the services provided by the checkpointing layer, which
encapsulates the particularities of the checkpointing protocol itself. This allows for
protocol changes without a�ecting the façade, nor the layers below, either. The ser-
vices provided by the checkpointing layer are described in the following subsections.

• State �le writing

The fundamental goal of this service is to implement the speci�cs of the check-
point protocol before delegating the �le creation into the layer below. If a coordi-
nated checkpointing scheme were to be introduced, this would be the layer to do so.
Since CPPC's compile-time coordination checkpointing scheme does not use runtime
coordination or message-logging, there are no relevant actions to be taken at this
point.

This service checks that the data passed by the façade are valid, creating a new
thread to handle state dumping (multithreaded checkpointing) and return. How-
ever, it also needs to ensure that the two threads do not incur inconsistent memory
modi�cations, since accessing the checkpoint data is a critical section. In order to
avoid this situation, the checkpointing layer creates a replica of the memory blocks

54 Chapter 2. CPPC Library

to be dumped before creating the checkpointing thread. This enables concurrency,
but it takes time to perform the copying itself. Another option would be to protect
the memory to be dumped, allowing only read accesses to it. This can be done by
any modern operating system, but it presents several problems that make memory
replication a better option:

There is no standard interface for memory protection, which makes the code
non-portable. This disadvantage can be easily overcome, however, since mem-
ory protection could be abstracted through the portability layer.

In most systems the memory protection works at page level. Since CPPC
works at variable level, this scheme is too coarse-grained, which would result
in many variables being unnecessarily protected when located in the same page
than relevant variables, resulting in a potential e�ciency loss.

When a process tries to write to protected memory, it receives a SIGSEGV. In
order to avoid execution failure, the library would need to capture and handle
this signal while checkpointing takes place. This could mask a legitimate
segmentation fault caused by the application code for reasons di�erent than
a write to protected memory. This, however, should not happen in correct
codes.

Once memory replication is �nished, a new thread is created to handle check-
pointing �le write, performed by the writing layer. CPPC supports sequential check-
pointing through the CPPC/Checkpointer/Multithreaded con�guration parameter.
If set to false, no threads are created and the checkpointing process uses the orig-
inal application memory, returning control when the state �le has been persistently
created in stable storage.

This service is the only one from the checkpointing layer that the façade uses
during a normal execution. The rest of them are only relevant during the restart
phase.

• Integrity checks

When recovering an execution, each process checks which local checkpoints it has
available to build the recovery line. Since CPPC aims to provide fault tolerance, it

2.3 Model 55

cannot overlook the fact that checkpoint �les may become corrupt due to a series of
facts. Therefore it must perform state �le integrity checks.

CPPC provides an abstraction layer on the writing algorithm used for checkpoint
�le creation. This is due to the desire to provide �exibility and support for di�erent
computing platforms. However, this also means that integrity checks must be per-
formed by the writing module that created a certain state �le. The implementation
of this service, therefore, only checks that the requested �le exists, that it is not
empty, and delegates all further actions to the writing layer.

• State �le reading

This operation is also delegated to the writing layer. The speci�c writing module
used for creating a certain checkpoint �le is in charge of recovering its data back
for application restart. The only constraint on physical checkpoint �le formats is
that their �rst byte must uniquely identify the speci�c writing module used for its
creation. Thus, at this point, the checkpointing layer reads that �rst byte, and
obtains a writing module object by requesting an abstract factory [28] to provide a
writer instance identi�ed by that byte. The read operation is then delegated to the
obtained writer, that returns the checkpoint in the hierarchical format previously
seen in Figure 2.3. This checkpoint object is stored by the checkpointer for servicing
future recovery requests by the façade.

• Partial data recovery

This operation is invoked after a checkpoint �le has been selected and read
into memory. The checkpointing layer is in possession of all checkpoint data, and
must return memory blocks to the façade on demand. A partial data recovery
operation is invoked to recover the contents of a variable or parameter registration.
The checkpointing layer fetches the requested register from the current execution
context in the saved hierarchy, and returns the address containing its data.

One of the parameters passed to this function is the size of the register to be
recovered, in bytes. This number must be the same as the size of the matching
register recovered from the checkpoint �le. Note that this number depends on the
binary representation for the registered data type in the computing platform used
for restart. This mechanism is used as an addition to �le integrity checks to further
guarantee consistency. The typical errors detected by this technique are inconsis-

56 Chapter 2. CPPC Library

tencies between the application code and the �le being used for restarting, such
as situations where the code has been modi�ed and recompiled after the �le was
generated.

• Restart completion check

Besides storing variable registrations, call images and subcontexts, an execution
context inside a checkpoint �le stores whether that �le was created while inside said
context or not. This function checks two conditions:

The current execution context in the saved hierarchy is marked as the one
where the checkpoint �le was created.

The checkpoint call in the current procedure is the one where the checkpoint
�le was created. This is done through the unique identi�er passed to the check-
point function, and ensures consistent restart when two or more checkpoint
functions are placed in the same procedure scope.

2.3.3. Writing layer

This layer is in charge of actually handling the stable storage of state �les. It is
abstracted through a pure virtual class [63] that provides four operations: write a
checkpoint �le, read a checkpoint �le, check the integrity of a checkpoint �le, and
obtain a writer plugin identi�er code. This code is unique to each implementation
of the virtual class, and guarantees a coherent management of the available writing
strategies. CPPC includes an HDF-57 [27] writing plugin. In the past, a binary
writer was also provided, which intended to provide e�ciency in exchange for func-
tionality. It was discontinued, however, since con�guring the HDF-5 library to write
data in memory format while tagging it to support data conversions when restarting
the application, if necessary, resulted in an equally e�cient operation.

New writing plugins can be easily implemented and integrated into the library. A
writer abstract factory provides a function for writing plugins to register themselves
when the application starts. The factory then manages a hash table indexed by
writer codes, and containing a constructor function for associated writer objects.

7HDF-5 is a hierarchical data format and associated library for the portable transfer of graphical
and numerical data between computers.

2.3 Model 57

Plugins are dynamically registered taking advantage of the initialization of constant
variables [6]. The factory provides a method for obtaining a writer through its writer
code. Thus, the checkpointing layer may perform requests for writer instances in
two di�erent ways, depending on the execution state:

If a state �le is being written, the writer code is located through the CPPC/-

Writer/Type con�guration parameter.

If a state �le is being read, the writer code is obtained by reading the �rst
byte of the checkpoint �le used for restart.

Again, the only constraint for the physical format of generated state �les is that
their �rst byte must contain the writer code of their creator. Otherwise, the writing
strategy must only guarantee that it is able to consistently recover its written data.

Regarding writing options and functionalities, these are completely dependent
on the speci�c writing module being used. Each particular writing module can use
its own namespace to accept con�guration parameters (e.g. CPPC/Writer/HDF-5 for
the HDF-5 writer).

2.3.4. Portability layer

A portable tool for checkpointing parallel applications must deal with non-
standard interfaces that may risk portability of the library between di�erent hard-
ware/software platforms. For instance, operating systems provide di�erent inter-
faces for accessing the �lesystem. CPPC abstracts certain parts of its functionality
through a system of template classes [63] that receive a policy [6], or implementation
class in which they delegate all their behavior.

The portability layer is static, as oppossed to dynamic ones such as the writing
layer. This means that the actual implementation for the abstracted interface is
selected at compile time. A recompilation is needed in order to change it later.
Since this layer tries to achieve portability, and not extra functionalities, there is no
need to make it dynamic, which would in turn diminish e�ciency (by forcing the
use of virtual functions [63]).

58 Chapter 2. CPPC Library

• Filesystem

The problem of portably accessing the �lesystem has been mentioned several
times. To workaround it, CPPC de�nes two interfaces that must be implemented
for each operating system to be supported by the library. The �rst interface is the
�lesystem manager itself, providing operations for creation and removal of folders,
removal of regular �les (there are standard means for creating regular �les in C++),
test the existence and size of �les, and for opening directory streams. Here the second
interface comes into play: the directory stream itself. It is a pure virtual class that
must provide a single method to iterate through the directory's contents. Both
interfaces provide the necessary abstractions for CPPC operations to be portably
implemented in the above layers.

A POSIX8 implementation of these interfaces is provided with CPPC. It may
be used for compiling the library in operating systems conforming to the standard.
However, the implementation of these interfaces is quite simple for any given oper-
ating system. Currently, a proposal of the Boost.Filesystem library9, which provides
portable facilities to query and manipulate paths, �les and directories, has been ac-
cepted by the C++ Standards Committee for inclusion in the C++ Technical Report
2. If �nally included into the language, this would eliminate the need for this ab-
straction layer. The inclusion of a Boost.Filesystem dependency in CPPC was also
considered, but ultimately discarded since the Boost libraries are not commonplace.

• XML manipulation

This simple abstraction interface decouples CPPC from the speci�c XML parsing
solution being used. It only contains two relevant functions: one for indicating the
�le to be parsed and another one for recovering the value of a given tag.

An implementation of this interface using the Xerces-C [72] library, a portable
widespread parsing facility, is included with CPPC.

8POSIX (Portable Operating System Interface) is the collective name of a family of related
standards speci�ed by the IEEE to de�ne the API, along with shell and utilities interfaces for
software compatible with variants of the Unix operating system, although the standard can apply
to any operating system.

9The Boost C++ libraries are a collection of peer-reviewed, open source libraries that extend
the functionality of C++. They cover a wide range of application domains, ranging from general-
purpose libraries (e.g. smart pointers implementations) to OS abstractions like Boost.FileSystem.
The Boost libraries homepage can be found at http://www.boost.org.

2.3 Model 59

• Communications system

While CPPC was designed to work with MPI applications, the portability of the
strategies used for rollback-recovery allows it to be independent from the commu-
nications system. Thus, it is enough to abstract communication-related operations
through an interface to achieve independence. Operations included in this interface
are: global synchronizations (barriers); obtaining a unique rank for each process
executing the application; obtaining the total number of processes executing the
application; and performing reduction operations on the minimum and maximum
of a basic data type. Note that if the communications system does not support
reduction operations, these might be implemented using global or point-to-point
communications.

Two di�erent implementations of the communications interface are provided: an
MPI-based one, and another one for the execution of sequential applications, called
�no-communicator�, that makes a trivial implementation of these operations in a
single-process environment.

2.3.5. Utility layer

This layer includes reusable functionalities useful for implementing writers, com-
munication modules, etc.

• Compression system

Under certain circumstances, the user may need to apply compression to the
state �les generated by CPPC. Originally, �le compression was centralized by the
checkpointing layer. However, the abstraction between this and the writing layer
generated troublesome situations. For example, compressing a �le involved writing
it to disk uncompressed through the writing layer, reopening it at the checkpointing
layer, compressing the data and writing the �le again. This becomes extremely
inconvenient when stable storage is remotely provided. Due to this, the system
became an independent entity as part of the utility layer. Each writing plugin may
decide how to use (or not use) the compression algorithms included with CPPC. This
enables the use of ad-hoc compression systems when using complex data storage
libraries for checkpoint �le storage, like HDF-5, which provides its own compression
capabilities. The obvious disadvantage is that decentralizing this operation increases

60 Chapter 2. CPPC Library

the complexity of the writing modules, which have to include the compression code
themselves.

The structure of the compression system is a replica of the writing layer. Com-
pression algorithms must implement a common interface, which provides meth-
ods for data compression and decompression, and register themselves with an ab-
stract factory when the execution starts. Each plugin implementation has its own
unique identi�er code, so that the factory knows which instance to return. The
CPPC/Compressor/Type con�guration parameter de�nes which implementation of
the compressor to use. Writing plugins using the compression system must some-
how store the code for the used compressor into the �le, in a similar way to the
writer code, in order to enable decompression upon restart.

The impact of compressing �les on checkpointing overhead is analyzed in Chap-
ter 4.

• Con�guration manager

This subsystem was introduced when covering the CPPC_Init_configuration()
function in the façade, in Section 2.3.1. Its purpose is to encapsulate con�guration
sources and priorities. It consists of a singleton class with two public methods: one
to initialize the manager, which receives the application command-line parameters
and initializes and reads CPPC's con�guration �le; and another one for queries
regarding parameter values.

Since the manager is heavily used by all the layers in the model, it uses a pa-
rameter cache to improve the performance of the query operations.

• Cyclic redundancy checks

This system includes a reusable class implementing a common CRC-32 algorithm.
It may be used by writing plugins to implement their integrity checks.

2.4. Summary

This chapter describes one of the two fundamental parts of this work: the check-
pointing library for message-passing parallel applications. The design and imple-

2.4 Summary 61

mentation of the library have been described using a top-down approach, beginning
at the application code and descending through the controller, used for decoupling
the model from the programming language being used, and �nally through the model
layers of CPPC: façade, checkpointing layer and writing layer. Also, the portability
layer has been described, being specially important for providing abstractions for
certain OS-dependent operations (�lesystem access, communications, etc.). Finally,
the utility layer, which combines useful functionalities o�ered to all the model layers,
was described.

As seen throughout the chapter, the modi�cations that need to be performed
on the application's code in order to achieve integration with CPPC are far from
trivial. To automate this task, a source-to-source compiler is used, as described in
the following chapter.

Chapter 3

CPPC Compiler

The integration of the CPPC library with a parallel application requires modi-
�cations to be performed to the original code. Their speci�cs were detailed in the
previous chapter. If manually performed, the process would place an undesirable
burden upon the users, who would have to manually perform complex analyses such
as detecting live variables and safe points. Besides inserting CPPC library calls
into the appropriate places, users would also need to insert the control �ow code
that enables the recovery process. In order to free users from these tasks, ful�lling
the transparency goal in CPPC, a source-to-source compiler has been implemented
that automates all necessary analyses and transformations to parallel or sequential
applications.

This chapter covers all the analyses implemented into the CPPC compiler, as
well as some of its most relevant internal implementation details.

3.1. Compiler overview

The CPPC compiler is built on the Cetus compiler infrastructure [37]. It is
written in Java, which makes its code inherently portable. Although Cetus was
originally designed to support C codes, we have extended it to allow for parsing For-
tran 77 codes as well. The speci�cs of this extension are detailed in Section 3.4. The
implementation uses the same basic intermediate representation language (IRL) for
both C and Fortran 77 codes, hence allowing the same analysis and transformation
code to be used with applications written in both languages.

63

64 Chapter 3. CPPC Compiler

Some of the analyses performed by the compiler require knowledge about proce-
dure semantics (e.g. which procedure initializes the parallel system). We call these
transformations semantic-directed. In order to provide the required semantic knowl-
edge to the compiler, CPPC uses a catalog of procedures and its semantic behaviors.
An example of the contents of this semantic catalog is shown in Figure 3.1, that ex-
empli�es information for the POSIX fopen and open functions. Both implement
the CPPC/IO/Open role (i.e. they open a �le I/O stream). Both functions accept two
parameters: a path string and a �le opening mode, and both return a �le descrip-
tor. Each procedure in the semantic catalog may implement any number of semantic
roles. Each semantic role indicates that the function has a particular semantic be-
havior. The implementation of a role by a function may have associated attributes
indicating the speci�cs of the semantic behavior. For instance, the DescriptorType
attribute for the fopen/open case indicates the type of the returned descriptor. It
is internally used by the �lesystem module in the portability layer of the CPPC li-
brary to select a speci�c �le stream manipulation routine, depending on the returned
descriptor type.

The catalog also contains data �ow information. Procedure parameters are cate-
gorized into input, output and input-output, depending on whether they are read,
written, or read and written by the procedure. These tags allow the compiler to
perform optimized data �ow analyses for live variable detection (see Section 3.2.5).
However, data �ow information is not necessary for proper operation. If missing, the
compiler will take the conservative approach of considering all function parameters
to be of input type, which implies that their values need to be recovered before the
procedure is called.

The semantic catalog is a portable and extensible solution for providing seman-
tic information, and enables transformations to work with di�erent programming
interfaces for a given subsystem. Supporting PVM communications, for instance,
only requires the addition of the corresponding semantic information. Note that the
semantic catalog is not created or modi�ed by CPPC users, but provided together
with the compiler distribution. In the current CPPC distribution, the catalog in-
cludes information about Fortran 77 built-in functions; common UNIX functions;
and the MPI standard, in both C and Fortran 77 versions. This is enough to sup-
port most HPC MPI application in *NIX environments. Table 3.1 summarizes all
existing semantic roles and their attributes.

3.1 Compiler overview 65

<function name="fopen">

<input parameters="1,2"/>

<semantics>

<semantic role="CPPC/IO/Open">

<attribute name="FileDescriptor"

value="return"/>

<attribute name="Path" value="1"/>

<attribute name="DescriptorType"

value="CPPC_UNIX_FILE"/>

</semantic>

</semantics>

</function>

<function name="open">

<input parameters="1,2"/>

<semantics>

<semantic role="CPPC/IO/Open">

<attribute name="FileDescriptor"

value="return"/>

<attribute name="Path" value="1"/>

<attribute name="DescriptorType"

value="CPPC_UNIX_FD"/>

</semantic>

</semantics>

</function>

Figure 3.1: Semantic information for the fopen and open functions

66 Chapter 3. CPPC Compiler
T
able

3.1:
Sem

antic
roles

used
by

the
C
P
P
C
com

piler
R
o
le

S
e
m
a
n
tic

A
ttrib

u
te
s

C
P
P
C
/
C
o
m
m
/
I
n
i
t
i
a
l
i
z
e
r

Initialization
of

the
parallel

subsystem
N
one

C
P
P
C
/
N
o
n
p
o
r
t
a
b
l
e

N
on-p

ortable
function

call
N
one

C
P
P
C
/
I
O
/
O
p
e
n

O
p
ening

of
a
�le

stream

•
F
i
l
e
D
e
s
c
r
i
p
t
o
r
:
H
ow

is
the

descriptor
returned.
•
P
a
t
h
:
P
ath

param
eter.

•
D
e
s
c
r
i
p
t
o
r
T
y
p
e
:

T
yp
e
of

the
�le

de-
scriptor.

C
P
P
C
/
I
O
/
C
l
o
s
e

C
losing

of
a
�le

stream
•

F
i
l
e
D
e
s
c
r
i
p
t
o
r
:

D
escriptor

param
e-

ter.

C
P
P
C
/
C
o
m
m
/
S
e
n
d

M
essage

send

•
B
l
o
c
k
i
n
g
:
true/false.

•
T
y
p
e
:
P
2P

/C
ollective.

•
P
e
e
r
:
P
eer

rank
param

eter.
•
T
a
g
:
T
ag

param
eter.

•
C
o
m
m
u
n
i
c
a
t
o
r
:
C
om

m
unicator

param
-

eter.
•
R
e
q
u
e
s
t
:
R
equest

param
eter,

for
non-

blocking
com

m
unications

only.
C
P
P
C
/
C
o
m
m
/
R
e
c
v

M
essage

receive
Sam

e
as

C
P
P
C
/
C
o
m
m
/
S
e
n
d.

C
P
P
C
/
C
o
m
m
/
W
a
i
t

C
om

m
unication

w
ait

•
B
l
o
c
k
i
n
g
:
true/false.

o
•

T
y
p
e
:
P
2P

/C
ollective.

•
R
e
q
u
e
s
t
:
R
equest

param
eter,

for
non-

blocking
w
aits

only.

C
P
P
C
/
C
o
m
m
/
R
a
n
k
e
r

O
btention

of
the

rank
of

a
process

in
a

com
m
unicator

•
R
a
n
k
:
H
ow

is
the

rank
returned.

C
P
P
C
/
C
o
m
m
/
S
i
z
e
r

O
btention

of
the

size
of

a
com

m
unicator

•
S
i
z
e
:
H
ow

is
the

size
returned.

3.2 Analyses and transformations 67

3.2. Analyses and transformations

The CPPC compiler is a multi-pass compiler. These kind of compilers process
the source code multiple times. Each pass takes the results of the previous one
as its input, and creates an intermediate output. The code is improved pass by
pass, until the �nal code is emitted. The �rst of these passes is the parsing of the
source code, that builds the Cetus AST1. Once this is done, the compiler begins the
sequential application of the set of passes that perform the core of the CPPC analyses
and transformations for checkpointing instrumentation. When information must be
transferred between passes, the compiler uses di�erent forms of AST annotation.
The following list of compiler passes is exhaustive, and described in the order the
compiler applies them:

3.2.1. CPPC initialization and �nalization routines

The CPPC_Init_configuration() call initializes the CPPC con�guration, while
CPPC_Init_state() marks the point for state initialization, creating all necessary
memory structures, such as lists of registered variables, execution contexts, etc.
When resuming the execution of a parallel application, interprocess communica-
tions are performed in order to �nd the recovery line. Therefore, the state must
be initialized after the communications system (e.g. after MPI_Init() for MPI ap-
plications). The insertion of CPPC_Init_configuration() is straightforward, and
performed at the �rst line of the application's entry procedure. The transforma-
tion for inserting CPPC_Init_state() is semantic-directed. The compiler looks for
a procedure implementing the CPPC/Comm/Initializer role. If found, it inserts
the state initialization right after it. Otherwise, the application is presumed to be
sequential or to use a communication system not needing initialization, and the call
is inserted after CPPC_Init_configuration().

The �nalization function, CPPC_Shutdown(), is inserted at exit points in the
application code. It ensures that ongoing checkpoint operations are correctly �nished
before the application ends.

1An Abstract Syntax Tree (AST) is a tree representation of the syntax of some source code.
Each node of the tree denotes a construct occurring in the source code. The tree is abstract in the
sense that it may not represent some constructs that appear in the original source (e.g. grouping
parenthesis, which are not needed since the grouping of operands is implicit in the tree structure).

68 Chapter 3. CPPC Compiler

CPPC JUMP LABEL

CPPC_Create_call_image("MPI_Comm_split", line_number);

CPPC_Register_parameter(&color, 1, CPPC_INT, "color", CPPC_STATIC);

CPPC_Register_parameter(&key, 1, CPPC_INT, "key", CPPC_STATIC);

CPPC_Commit_call_image();

MPI_Comm_split(comm, color, key,comm_out);

CONDITIONAL JUMP TO NEXT REC

Figure 3.2: Example of a non-portable procedure call transformation

3.2.2. Procedure calls with non-portable outcome

The CPPC library recovers non-portable state by means of the re-execution of the
code responsible for creating such state in the original run. The CPPC/Nonportable
semantic role is used for identifying procedures that create or modify non-portable
state. Upon discovery of a non-portable call, the compiler performs the transforma-
tion depicted in Figure 3.2 for an MPI_Comm_split() call, where the CPPC instru-
mentation added by the compiler is marked in bold. The block begins with a label
annotation which marks the jump destination from the previous REC, and ends with
a conditional jump annotation, to mark the point where a jump to the next REC
must be performed. Both annotations are objects in the cppc.compiler.ast pack-
age. The compiler also inserts a register for each input or input-output parameter
passed to the call that is a portable object. For more information on the runtime
behavior of non-portable calls and their instrumentation refer to Section 2.1.3.

3.2.3. Open �les

In order to identify �le opening calls, a semantic role CPPC/IO/Open is used. This
role accepts the following attributes:

FileDescriptor: A numeric value, or the special value return. It tells the
compiler which of the procedure parameters holds the �le descriptor after the
call, or if it is available as the returned value.

Path: A numeric value indicating the parameter that contains the �le path.

DescriptorType: A special constant value that must be de�ned and accepted
by the �lesystem module in the portability layer. Current accepted values

3.2 Analyses and transformations 69

CPPC JUMP LABEL

fd = open(path, mode);

CPPC_Register_descriptor(desc_id, &fd, CPPC_UNIX_FD, path);

CONDITIONAL JUMP TO NEXT REC

Figure 3.3: Pseudocode for a �le opening transformation

CPPC_Unregister_descriptor(&fd);

close(fd);

Figure 3.4: Pseudocode for a �le closing transformation

are CPPC_UNIX_FD, indicating that this is an integer like the ones returned
by open, and CPPC_UNIX_FILE, that identi�es FILE * descriptors as the ones
returned by fopen.

The compiler uses this information to perform the transformation depicted in
Figure 3.3, where instrumentation code is emphasized in bold. The desc_id pa-
rameter passed to the descriptor registration call is a unique identi�er for this de-
scriptor, automatically assigned by the compiler. When the application is recov-
ered, CPPC_Register_descriptor() ensures correct repositioning of the �le stream
pointer.

File closing calls are identi�ed by the CPPC/IO/Close role, parameterized only
with the FileDescriptor attribute de�ned as above. The transformation performed
by the compiler is shown in Figure 3.4. Note that this block is not enclosed by
control �ow annotations, because it does not need to be re-executed for proper state
recovery.

3.2.4. Conversion to CPPC statements

Some of the transformations to be performed from this point require statements
to be intensively annotated. However, the Cetus class for representing a statement
does not include any means for this. Thus, a cppc.compiler.ast.CppcStatement

class was created, through the specialization of the original cetus.hir.Statement.
It acts as a proxy for a contained regular statement, and adds some annotation
structures, such as data �ow information (i.e. variables that are read or written by
the statement), information about whether a particular statement is a safe point,

70 Chapter 3. CPPC Compiler

etc. This transformation makes a pass over the entire application code substitut-
ing regular Cetus statements for this CPPC version, enabling information sharing
amongst subsequent transformations.

3.2.5. Data �ow analysis

In order to identify the variables needed upon application restart, the compiler
performs a live variable analysis. This is a somehow complementary approach to
memory exclusion techniques used in sequential checkpointers to reduce the amount
of memory stored, such as the one proposed in [48].

A variable x is said to be live at a given statement s in a program if there is a
control �ow path from s to a use of x that contains no de�nition of x prior to its use.
The set LVin of live variables at a statement s can be calculated using the following
expression:

LVin(s) = (LVout(s)−DEF (s)) ∪ USE(s)

where LVout(s) is the set of live variables after executing statement s, and USE(s)

and DEF (s) are the sets of variables used and de�ned by s, respectively. This
analysis, that takes into account interprocedural data �ow, is performed backwards,
being LVout(send) = ∅, and send the last statement of the code.

Before each checkpoint statement ci, the compiler inserts annotations to register
the variables that must be stored in the checkpoint �le, which are those contained
in the set LVin(ci). The data type for the register is automatically determined by
checking the variable de�nition. Variables registered or de�ned at previous check-
points are not registered again. Also, before each checkpoint ci, the compiler inserts
�unregister� annotations for the variables in the set LVin(ci−1)−LVin(ci), the set of
variables that are no longer relevant.

Checkpoints can be placed inside any given procedure. For a checkpoint state-
ment ci, let us de�ne:

Bci
= {s1 < s2 < . . . < send}

as the ordered set of statements contained in all control �ow paths from ci (excluding
ci) and up to the last statement of the program code, where the < operator indicates
the precedence relationship between statements. Note that, if a checkpoint is placed
inside a procedure f , not all statements in the set Bci

will be inside f . Let us

3.2 Analyses and transformations 71

denote by Bf
ci

= {s1 < . . . < sn} the ordered set of statements contained inside f ,
and Lf

ci
= Bci

−Bf
ci
the ordered set of statements left to be analyzed outside f .

The interprocedural analysis and register insertion is performed according to the
following algorithm:

For a checkpoint statement ci contained in a procedure f , the live variable
analysis is performed for the set Bf

ci
, and registers for locally live variables are

inserted before ci.

For the set Lf
ci
, containing the statements that are left unanalyzed in the

previous step, let us consider g to be the procedure containing the statement
sn+1. The statement executed immediately before sn+1 must be a call to f .
Note that Lf

ci
= Bg

ci
t Lg

ci
.

The live variable analysis is performed for the set Bg
ci
, and registers for locally

live variables are inserted before the call to f .

The process is repeated for the statements contained in the ordered set Lg
ci
.

This algorithm ensures that, upon application restart, all variables will be de�ned
before being used, and thus the portable state of the application will be correctly
recovered.

Proof of Correctness: Let us consider a variable v which appears in the state-
ments contained in Bci

, and let sv ∈ Bci
be the statement where it �rst appears.

There are three di�erent cases to analyze: v can either be an input, an output,
or an input-output variable for sv. Using the de�nition of the live variable analysis:

input: v ∈ USE(sv) ∧ v /∈ DEF (sv)

USE(sv) ⊂ LVin(sv)⇒ v ∈ LVin(sv)

Since sv was the �rst appearance of v in Bci
, there is no previous statement

which de�nes its value, meaning that v belongs to the live variable set for
every statement before sv:

@i/(v ∈ DEF (si)) ∧ (si < sv)⇒

v ∈ LVin(sj),∀j/sj < sv

72 Chapter 3. CPPC Compiler

In particular, since ci < sv: v ∈ LVin(ci).

A register will be inserted before sv when analyzing its containing procedure.
This register will generate v's value when restarting the application.

output: v /∈ USE(sv) ∧ v ∈ DEF (sv)

In this case, it is guaranteed that v /∈ LVin(sv).

Since sv was the �rst appearance of v in Bci
, there is no previous statement

which uses its value, meaning that v does not belong to the live variable set
for every statement before sv:

@i/(v ∈ USE(si)) ∧ (si < sv)⇒

v /∈ LVin(sj),∀j/sj < sv

In particular, since ci < sv: v /∈ LVin(ci).

No register will be inserted; v's value will be generated upon reaching sv,
therefore de�ning it.

input-output: v ∈ USE(sv) ∧ v ∈ DEF (sv)

This case is similar to the input one.

Proof of Termination: The algorithm terminates if all statements contained
into Bci

are analyzed. Bci
is a �nite set, since its maximum number of elements

is equal to the total number of statements in the application being analyzed. The
evolution of the cardinality of the unanalyzed set of statements is as follows:

In the �rst phase of the algorithm (the analysis of procedure f), the statements
in Bf

ci
are analyzed. Either s1 ∈ f and #Lf

ci
< #Bci

, or ci is the last statement
in f and #Lf

ci
= #Bci

.

In each of the subsequent phases, the set of unanalyzed statements can be
written as:

Lpn
ci

= {spn

1 , . . . , spn
m } = Bci

− (
n⊔

j=1

Bpj
ci

)

3.2 Analyses and transformations 73

where each pj is the procedure being analyzed in phase j. In phase n, the
algorithm analyzes the procedure containing the statement spn

1 . Therefore, at
least one statement is analyzed, and #Lpn+1

ci
< #Lpn

ci
.

Since all the statements must be contained in a procedure in order to be in the
initial Bci

and this is a �nite set, the termination of the algorithm in a �nite number
of steps is guaranteed.

The compiler does not currently perform optimal bounds checks for pointer and
array variables. This means that some arrays and pointers are registered in a conser-
vative way: they are entirely stored if they are used at any point in the re-executed
code.

When dealing with calls to precompiled procedures located in external libraries,
the default behavior is to assume all parameters to be of input type. Therefore,
registration calls will be inserted for the previously unrecovered variables contained
in the set LVin(sp), being sp the analyzed procedure call. To avoid this default
behavior, the CPPC compiler can use data �ow information available in the semantic
catalog, as explained in Section 3.1.

3.2.6. Communication analysis

In order to automatically �nd regions in the code were neither in-transit nor
inconsistent communications exist, that is, safe points, the compiler must analyze
communication statements and match sends to their respective receives. The ap-
proach the compiler uses is similar to a static simulation of the execution. Two
communications are considered to match if two conditions hold:

1. Their tags are the same or the receive uses MPI_ANY_TAG.

2. Their sets of sources/destinations are the same: if a process i sends a message
to a process j, then j must execute the corresponding receive statement using
i as source.

In order to statically compare tags and source/destination pairs, the compiler
performs constant propagation and folding to determine their literal values during

74 Chapter 3. CPPC Compiler

the execution. Since propagating and folding all application constants may prove to
be as computationally intensive as the actual execution, the compiler restricts this
operation to the set of variables that are involved in the calculations of parameters
a�ecting communications. The set of communication-relevant variables is recursively
calculated as:

1. Variables directly used in tags or source/destination parameters.

2. Variables on which a communication-relevant variable depends.

In order to optimize this process, only statements that modify communication-
relevant variables are analyzed for constant folding, since any other does not a�ect
communications. The data �ow information is obtained from the annotations intro-
duced by the previous compilation pass. Some communication-relevant variables are
multivalued, that is, they potentially have a di�erent value for each process. Thus,
the compiler needs to know how many processes are involved in the execution of the
code to perform the constant folding. For instance, many applications are written
in a scalable fashion, using code that dynamically calculates neighbor processes in
the commmunication topology. These calculations are a�ected by the total number
of processes involved in the parallel execution. The number of processes is provided
to the compiler via command-line parameters. Then, using the CPPC/Comm/Ranker
and CPPC/Comm/Sizer semantic roles, the compiler is able to �nd values for the
variables that contain the number of processes and the rank of a process. Note that
the latter is multivalued (e.g. {0, . . . , N − 1} if there are N processes in the exe-
cution). Expressions derived from multivalues are, in the general case, multivalued
themselves. The constant folding and propagation is performed together with the
communication matching in the same compilation pass. The compiler is able to
fold array expressions and correctly calculate array values statically, as long as they
depend entirely on values known at compile time.

For keeping track of the communications status, the compiler uses a bu�er ob-
ject, which starts out empty. The analysis begins at the application's entry point.
Statements that are neither control �ow- nor communication-related are ignored.
Each time the compiler �nds a new communication, it �rst tries to match it with
existing ones in the bu�er. If a match is not found, the communication is added
to the bu�er and the analysis continues. If a match is found, both statements are
considered linked and removed from the bu�er, except when matching non-blocking
sends and receives, in which case they remain in the bu�er in an unwaited status
until a matching wait is found.

3.2 Analyses and transformations 75

A statement in the application code will be considered a safe point if, and only if,
the bu�er is completely empty when the analysis reaches that statement. An empty
bu�er implies that no pending communications have been issued, and therefore it is
impossible for an in-transit or inconsistent message to exist at that point.

The following subsections deal with particular aspects of the communications
analysis, such as analyzing conditional expressions, procedure calls, collective com-
munications and the limitations of this approach.

• Conditional statements

Conditional statements need special treatment, since their execution order is
nondeterministic. Upon reaching a conditional, SPMD processes potentially divide
into two groups: those executing the true clause, and those executing the false one.
The compiler uses linked bu�ers to analyze conditional statements. The di�erence
with a regular bu�er is that a linked bu�er Bl is associated to another one Bo in a
way that, for a statement to be considered a safe point, not only the Bl has to be
empty, but Bo must also be consistent with the safe point condition. Note that this
may be generalized as a chain of linked bu�ers which check if they are themselves
empty and delegate the �nal decision on their link until one is not empty or the root
one is reached, much like in a chain of responsibility pattern [28].

The compiler creates an empty bu�er Bt linked to the old one Bo, and uses it to
analyze the true clause. Found communications are added to Bt, and matched as
usual, with an important di�erence: each one is marked as being executed only if
the expression controlling the conditional statement execution holds. After the true
clause is analyzed, the compiler proceeds in the same way with the false one using a
di�erent bu�er Bf also linked to Bo. This time, each communication is marked as
being executed only if the expression controlling the conditional does not hold.

When both branches have been fully analyzed, the compiler has three di�erent
bu�ers, Bt, Bf and Bo, that need to be merged into a single one. First, redundant
communications are removed from Bt and Bf . Although both conditional paths ex-
ecute a di�erent set of statements, equivalent communications may exist. These are
communications that are executed in di�erent statements in the code but matched
to a single one outside the conditional. If these redundant communications were
not identi�ed, the algorithm would yield incorrect results, since only one of the
equivalent communications would be correctly matched. Thus, two communication

76 Chapter 3. CPPC Compiler

statements are considered equivalent if they both match the same set of statements
according to their source/destination pair and tag, and if both are issued under
incompatible control expressions (e.g. on di�erent branches of the same conditional
statement). Redundant communications are substituted by a single representative
one, that will be matched at the same point in the code where each of the redundant
ones would during execution. This enables consistent discovery of safe points in the
presence of redundant communication statements.

The next step consists in merging all three bu�ers into a single one that rep-
resents the communications state after executing the conditional. The process of
merging two bu�ers is a binary operation. The left hand side bu�er (Blhs) repre-
sents the communications state before executing a block of code. The right hand side
bu�er (Brhs) represents the communications issued by the execution of that block
of code. The communications in Brhs are orderly injected into Blhs. Non matching
communications are added to Blhs. Matches are dealt with as previously explained.
When the process ends, the resulting bu�er represents the communications state of
a process that, starting in a state represented by Blhs, executes the block of code
issuing communications in Brhs. Note that this process implies a deferral of the
matches for the statements in the new bu�er. Since there is no correct partial order
for the statements in conditional branches, both are independently analyzed and
then mixed before being injected into the bu�er representing the old state.

First, Bt and Bf are merged together. The result is merged with Bo. The result
of this second merge is used for the analysis of subsequent communications. The
reason for merging the bu�ers obtained from analyzing the conditional �rst is that
often communications in di�erent conditional branches match between themselves.

Note that some conditional control expressions may be calculated during the
constant folding analysis. In these cases, the compiler analyzes only the appropriate
conditional branch. The compiler is also able to detect situations in which the
control expression is multivalued, and deal with them accordingly.

• Procedure calls

When the compiler �nds a procedure call, it stops the ongoing analysis and moves
to analyze the code of the called procedure, using the same communications bu�er.
However, communications issued inside the procedure are also cached separately
for optimization purposes. If the procedure does not modify any communication-

3.2 Analyses and transformations 77

relevant variable, cached results can be reused when a new call to the same procedure
is found, without analyzing the procedure code, but just symbolically analyzing their
tags and source/destination parameters again.

The compiler employs this optimization whenever possible, thus avoiding the
repeated analysis of procedures each time a call to them is found. If the procedure
modi�es any communication-relevant variable, then its code is analyzed each time a
call is found, since these modi�cations have to be tracked and applied to guarantee
correct constant folding.

• Collective communications

In SPMD applications, the usual way of coding collective communications is to
make all involved processes execute a single, non conditional line of code. Before
and after the execution of that line the collective communication does not a�ect the
consistency of communications. However, in the general case, a code may contain
a collective communication spread across several conditional paths. In this case,
all its parts must be detected as redundant and the compiler must ensure that
no checkpoints are inserted such that some processes take its local one before the
collective while some others do so after it.

• Limitations

Some parallel applications present nondeterministic or irregular communication
patterns (those depending on runtime input data, where tags and/or source/desti-
nation parameters are derived from the input data and cannot be statically deter-
mined). In these situations, the compiler must apply either a conservative approach
or heuristics in order to detect safe points. A conservative approach involves match-
ing communications to their latest possible match in the code, although this can lead
to the compiler not �nding safe points at points selected by the checkpoint insertion
analysis described in the next section. The heuristic currently in use is to consider
that two communications match if no matching incompatibility between their tags
and source/destination pairs is found.

78 Chapter 3. CPPC Compiler

3.2.7. Checkpoint insertion

The compiler locates sections of the code that take a long time to execute, where
checkpoints are needed to guarantee execution progress in the presence of failures.
Since computation time cannot be accurately predicted at compile time without
knowledge of the computing platforms and input data, heuristics are used. The
compiler discards any code location that is not inside a loop, and ranks all loop
nests in the code using computational metrics. Currently, a metric derived from
both the number of statements executed inside the loop and the number of variables
accessed in them is used. A loop might have many statements but accessing mostly
constants. These are usually not good candidates for checkpointing, since they
involve initializing variables and their execution does not last long. In this case,
considering the number of variable accesses in the loop reduces the cost associated
to such loops, thus making them less prone to be checkpointed.

Let l be a loop in L, the loop population of the application P , and s and a two
functions that give the number of statements and variable accesses in a given block
of code, respectively. Let us de�ne S(l) = s(l)/s(P) and A(l) = a(l)/a(P) the total
proportion of statements and accesses, in that order, that exist inside a given loop
l. The heuristic complexity value associated to each loop l is calculated as:

h(l) = −log(S(l) · A(l)) (3.1)

Eq. (3.1) multiplies S(l) and A(l) to ensure that the product is bigger for loops that
are signi�cant for both metrics. It applies a logarithm to make variations smoother.
Finally, it takes the negative of the value to make h(l) strictly positive. Thus, a
lower value implies that more computing time is estimated for that loop. In order
to select the best candidates for checkpoint insertion, the compiler ranks loops in
L attending to h(l) and applies thresholding methods [57]. After exploring several
possibilities, a two-step method has been adopted. First, a �shape-based� approach
is used to select the subset of the time-consuming loop nests in the application.
The second step improves this selection by means of a �cluster-based� technique.
Figures 3.5 and 3.6 show the proposed method applied to the BT application of the
NAS Parallel Benchmarks [3].

In the �rst step, using the so-called �triangle method�, loops in L are divided into
two classes: time-consuming loops and negligible loops. Conceptually, the triangle
method consists in: (a) drawing a line between the �rst and last values of h(l);
(b) calculating the perpendicular distance d(l) to this line for all l ∈ L; and (c)

3.2 Analyses and transformations 79

Figure 3.5: First step: shape-based threshold

calculating a threshold value lt such that d(lt) = max{d(l)}. This �rst step selects a
subset of the loop population, referred to as H, as time-consuming loops candidates
for checkpoint insertion, as shown in Figure 3.5. The triangle method was originally
developed in the context of image processing [73], and appears to be especially
e�ective when there is a narrow peak in the histogram, which is often the case for
the proposed h(l) function in real applications.

However, this �rst threshold selects more loops than would be desirable for check-
point insertion. The second step of the proposed algorithm re�nes this selection us-
ing a cluster-based thresholding algorithm. Loops in H with similar associated costs
are grouped into clusters, Ci, built by selecting the local maximums of the second
derivative of h(l) as partitioning limits. Since h(l) is monotonically increasing, local
maximums in h′′(l) represent in�ection points at which h(l) begins to change more
smoothly. For an application with k clusters, the method calculates a threshold
value t such that:

t∑
i=0

h(l0i+1)− h(l0i) >
k−1∑

i=t+1

h(l0i+1)− h(l0i) (3.2)

where l0i denotes the �rst loop in Ci. This method selects for checkpoint insertion all
the loops inside the clusters Ci such that i ≤ t. In the example shown in Figure 3.6,
loops in subset H are grouped into two clusters, delimited by the single maximum

80 Chapter 3. CPPC Compiler

Figure 3.6: Second step: cluster-based threshold

in h′′(l). Applying Eq. (3.2), the compiler selects cluster C0 for checkpoint insertion,
which contains only one loop (which corresponds to the main computational loop in
BT).

Once the loops in which checkpoints are to be inserted are identi�ed, the com-
piler uses the communication analysis described in the last subsection to insert a
checkpoint at the �rst available safe point in each selected loop nest. Experimental
results are detailed in Chapter 4.

• Manual checkpoint insertion

Instead of, or in addition to, automatically placed checkpoints, the CPPC com-
piler allows for manual insertion of checkpoints through two di�erent user-inserted
directives:

#pragma cppc checkpoint: This directive orders the compiler to place a
checkpoint call in the exact position where it is inserted.

#pragma cppc checkpoint loop: This directive is placed before a loop, and
tells the compiler to insert a checkpoint at the �rst available safe point inside
it.

3.2 Analyses and transformations 81

DO I=A,B,STEP

!$CPPC CHECKPOINT

...

END DO

CPPC_INIT_IT = A

CPPC JUMP LABEL

CPPC_REGISTER(CPPC_INIT_IT, 1,

CPPC_INT, "CPPC_INIT_IT");

DO I=CPPC_INIT_IT,B,STEP

CPPC_INIT_IT=I

!$CPPC CHECKPOINT

...

END DO

Figure 3.7: Modi�cations to a checkpointed Fortran 77 loop

Cetus represents compilation directives through its cetus.hir.Annotation class,
that encapsulates a String object that contains the annotation text. Instead,
the CPPC compiler de�nes a cppc.compiler.ast Java package, de�ning several
Annotation subclasses that are internally used for inter-pass communications. This
achieves strong typing of the CPPC annotations, allowing for the compiler to uni-
formly �nd and process them using object-oriented techniques such as method over-
loading. An initial pass translates user-inserted checkpoint directives to the internal
CPPC representation.

The Fortran 77 syntax for inserting manual directives is !$CPPC CHECKPOINT

and !$CPPC CHECKPOINT LOOP.

3.2.8. Language-speci�c transformations

Some language-dependent modi�cations are necessary in order for the restart
protocol to consistently work. Particularly, restarting a Fortran 77 execution from
a checkpoint inside a loop needs the loop bounds to be changed in order for the
execution to be resumed from the correct loop iteration. Fortran 77 does not accept
loop indexes to be dynamically changed once the control �ow has entered the loop.
Instead, the set of values for the iteration variable is constructed when entering
the loop, and its value is updated at each iteration regardless of internal changes.
Therefore, a modi�cation to the loop variable persists only until the next iteration
starts, where it is modi�ed again and the modi�cation lost.

Figure 3.7 depicts the changes made to a Fortran 77 loop in order to enable
internal checkpointing. During a regular execution, the start value A is assigned to a

82 Chapter 3. CPPC Compiler

CPPC-introduced variable called CPPC_INIT_IT, which is updated at each iteration
of the loop before the checkpoint call. Thus, it is guaranteed that it will be stored
in the state �le containing the value of the checkpointed iteration. When the ap-
plication is restarted, this value will be recovered through the variable registration,
and the original loop bounds altered, starting the iteration at the correct value.

3.2.9. Code generation

At this point, all required analyses have been performed, and the code has been
annotated with objects in the cppc.compiler.ast package. This last pass looks
for those annotations and replaces them with their corresponding code in the AST.
Then, a code generator reads the AST and generates the output in the original
programming language.

3.3. Case study

For illustrative purposes, an example of how CPPC inserts checkpointing code
into a parallel application is presented. The target application is a simpli�ed C
version of a large-scale engineering code that performs a crack growth simulation
using the Dual Boundary Element Method (DBEM) [30], further used in Chapter 4
for the experimental evaluation of the CPPC tool. Figure 3.8 shows the original
code, which can be divided in �ve basic sections:

1. Reading of the execution parameters from a con�guration �le (done by the
process with rank 0).

2. Creation of the necessary MPI structures, such as communicators and data
types for supporting the communication between processes.

3. Distribution of the execution parameters and data previously read by process
0 among all the application processes.

4. Call to the frmtrx() subroutine, responsible for building the system matrix
(variable a) and the right-hand side vector (variable b) of the equation system
used for modelling the engineering problem.

3.3 Case study 83

int main(int argsc, char ** argsv) {
// Variable definitions
MPI_Init(&argsc, &argsv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

// Host reads parameters
if(myrank == 0) {

iinput = fopen("control.dat", "r");
fread(iinput, "%s\n", outname);
fread(iinput, "%d\n", &numstep);
...

}

// Creation of communication topology
MPI_Cart_create(MPI_COMM_WORLD, ndims,

dims, periods, reorder, &cart_comm);
...

// Distribution of parameter data
MPI_Bcast(&nel, 1, MPI_INTEGER, 0,

cart_comm);
MPI_Bcast(&nnp, 1, MPI_INTEGER, 0,

cart_comm);
...

// Construction of system matrix and rhs
frmtrx();

// Solution of equation system
solve();

...
}

void solve() {
// Variable definitions
...
for(i=0; i < maxiter; i++) {

mpi_dgemv(ml, nl, a, xm, ax, cart_comm);
mpi_dcopy(ml, b, 1, r, 1, cart_comm);
mpi_daxpy(ml, -1, ax, 1, r, 1, cart_comm);
...

}
...

}

Figure 3.8: Case study: original DBEM code

84 Chapter 3. CPPC Compiler

int main(int argsc, char ** argsv) {
// Variable definitions
void * cppc_jump_points[4] =

{ &&CPPC_EXEC_1, &&CPPC_EXEC_2, ...}
int cppc_next_jump_point = 0;
MPI_Init(&argsc, &argsv);
CPPC_Init(&argsc, &argsv);
// Conditional jump to CPPC_EXEC_0
if(CPPC_Jump_next()) {

goto * cppc_jump_points[jump_index++];
}
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

// Host reads parameters
CPPC_EXEC_0:

if(myrank == 0) {
// Conditional jump to CPPC_EXEC_1 (code omitted)
iinput = fopen("control.dat", "r");

CPPC_EXEC_1:
CPPC_Register_descriptor(0, iinput,

CPPC_UNIX_FILE, "control.dat");
// Conditional jump to CPPC_EXEC_2 (code omitted)
fread(iinput, "%s\n", outname);
...

}

// Creation of communication topology
CPPC_EXEC_2:

CPPC_Register_parameter(&ndims, ..., CPPC_STATIC);
dims = CPPC_Register_parameter(dims, ..., CPPC_DYNAMIC);
periods = CPPC_Register_parameter(periods, ..., CPPC_DYNAMIC);
CPPC_Register_parameter(&reorder, ..., CPPC_STATIC);
MPI_Cart_create(MPI_COMM_WORLD, ndims,

dims, periods, reorder, &cart_comm);
...
// Conditional jump to CPPC_EXEC_3 (code omitted)

// Distribution of parameter data
MPI_Bcast(&nel, 1, MPI_INTEGER, 0, cart_comm);
MPI_Bcast(&nnp, 1, MPI_INTEGER, 0, cart_comm);
...

// Construction of system matrix and rhs
frmtrx();

// Solution of equation system
CPPC_EXEC_3:

CPPC_Context_push("solve", 0);
solve();
CPPC_Context_pop();
...
CPPC_Shutdown();

}

Figure 3.9: Case study: CPPC-instrumented DBEM code

3.3 Case study 85

void solve() {
// Variable definitions + CPPC definitions
// Conditional jump to CPPC_EXEC_4 (code omitted)
...

CPPC_EXEC_4:
CPPC_Register(&i, ..., CPPC_STATIC);
CPPC_Register(&ml, ..., CPPC_STATIC);
a = CPPC_Register(a, ..., CPPC_DYNAMIC);
xm = CPPC_Register(xm, ..., CPPC_DYNAMIC);
ax = CPPC_Register(ax, ..., CPPC_DYNAMIC);
b = CPPC_Register(b, ..., CPPC_DYNAMIC);
...
// Conditional jump to CPPC_EXEC_5 (code omitted)
for(i=0; i < maxiter; i++) {

CPPC_EXEC_5:
CPPC_Do_checkpoint(0);
mpi_dgemv(ml, nl, a, xm, ax, cart_comm);
mpi_dcopy(ml, b, 1, r, 1, cart_comm);
mpi_daxpy(ml, -1, ax, 1, r, 1, cart_comm);
...

}
...

}

Figure 3.10: Case study: CPPC-instrumented DBEM code (cont.)

5. Call to the solve() subroutine, containing the computational loop which
solves the system.

The resulting code after processing by the CPPC compiler can be seen in Fig-
ure 3.9 and Figure 3.10. The compiler inserts new variables which are used to control
the program �ow on application restart, ensuring that only relevant blocks of code
are executed. The applied transformations are the following:

1. The compiler detects that the MPI_Init() call implements the CPPC/Comm/-

Initializer role. Therefore, the CPPC_Init() call is placed right after it.
The �nalization function is inserted at the end of the code.

2. The compiler identi�es the fopen() function as implementor of the CPPC/-

IO/Open role and inserts the C version of the �le handling function, CPPC_-
Register_descriptor().

3. The compiler �nds that the MPI_Cart_create() subroutine is tagged with
the CPPC/Nonportable role. It inserts the appropriate CPPC_Register_-

parameter() calls and adds necessary �ow control structures.

86 Chapter 3. CPPC Compiler

4. The compiler performs a safe point detection and inserts a checkpoint in the
loop in the solve() subroutine. It also performs a live variable analysis and
introduces the relevant registers prior to its execution. These include the i, ml,
a, xm, ax and b variables. nl is not registered, since it is declared as a constant
initialized in the code. r is an output parameter for the mpi_dcopy() call, and
hence it is not live at the analysis point. The insertion of a checkpoint inside
solve() causes calls to this subroutine to be re-executed on restart. Context
push and pop function calls are placed enclosing such calls to notify the CPPC
library of context changes.

If the application is restarted after a failure, the program �ows through relevant
blocks recovering the entire application state. Variables are initialized and both the
MPI and CPPC initialization functions are called. Then, a conditional jump to
label CPPC_EXEC_0 takes place, transferring execution to the conditional structure
that performs the opening of the �le 'control.dat'. Note that the condition is
tested before proceeding to REC execution, and so the semantics of the code are
preserved. The CPPC_Register_descriptor() function ensures that the iinput

descriptor state is correctly recovered. Next, the communication topology is recre-
ated upon reaching label CPPC_EXEC_2. Then the execution moves to the subrou-
tine call on label CPPC_EXEC_3. Once inside, relevant variable values are recovered
upon reaching label CPPC_EXEC_4, and later the checkpoint on label CPPC_EXEC_5 is
reached. CPPC determines that all the state has been restored, and the execution
is resumed normally in checkpoint operation mode.

3.4. Implementation details

This section covers the compiler implementation in some detail. Each subsection
is focused on a di�erent implementation issue, covering the addition of the necessary
features for Cetus to support Fortran 77 codes; the design patterns used to share as
much code as possible between the C and Fortran 77 versions of the compiler; and
the elegant implementation of code analyses.

3.4.1. Fortran 77 support

The original Cetus provides a compiler research environment that facilitates the
development of interprocedural analyses for C applications. There are three basic

3.4 Implementation details 87

layers on the Cetus design: a C parser, that reads source code and creates its
associated AST; classes representing the AST itself, providing representations of the
code and operations to manipulate it; and a code generator back-end that performs
the reverse transformation, reading an AST and outputting a C code.

Our goal when implementing the CPPC compiler was to be able to reuse the
compilation passes' code for processing both C and Fortran 77 applications. In
order to do so, a front-end capable of building a Cetus-compatible AST repre-
sentation of a Fortran 77 code was required. This front-end was implemented by
writing a Fortran 77 grammar using the ANTLR [46] parser generator tool. It
was also necessary to add new classes to the Cetus AST to represent Fortran 77
concepts that do not exist in C. The following abstractions were included on the
cppc.compiler.ast.fortran77 package:

COMMON declarations: A declaration with a block name, and an associated list
of regular declarations included in the common block.

DATA declarations: A declaration containing a list of variables and their asso-
ciated initializers.

DIMENSION declarations: A declaration containing a list of variables and their
associated dimensions.

IMPLICIT declarations: A class containing a beginning character, an end char-
acter, and an associated speci�er to the range.

COMPLEX datatype: A speci�er for representing complex datatypes.

Array speci�ers: Fortran array speci�ers di�er from C ones in that their lower
bound may be speci�ed when the array is declared. Since the Cetus version
of the array speci�er only contains an upper bound, this class was created to
allow for the inclusion of lower bound declarations.

String speci�ers: Fortran allows for strings to be de�ned as CHARACTER* vari-
ables. Since the concept of string does not exist in C, this class was added.

Double precision literals: Cetus does only support �oating point literals, with-
out specifying their precision. Therefore, all literals should be converted either
to �oats or doubles when building the AST, which would lead to potential
precision issues. This class is used for representing double literals, while the
original Cetus one is reserved for �oats.

88 Chapter 3. CPPC Compiler

Substring expressions: Supports substring expressions such as STRING(A:B).

Implied DO: Supports implied do constructions such as print *,(i+1,i=0,N).

Intrinsic I/O calls: Some Fortran intrinsics, such as print or write, accept
a number of regular parameters and then any number of variable arguments,
such as in write(FILE), i, j, k, ... This class represents such a call,
separating its parameters in regular ones (to be included between brackets)
and variable ones.

FORMAT statements.

Computed GOTOs: Support for Fortran-style computed GOTOs, of the form GOTO

(LABEL1,LABEL2,...) INDEX.

DO loops: Support for Fortran-style DO loops, that have no direct equivalent in
C.

Ideally, once the source code is represented as an AST, the compilation passes
are able to handle applications regardless of the source language they were originally
written in. However, there are certain code structures that have to be handled in
di�erent ways for di�erent programming languages. The next subsection covers how
these di�erences are handled.

Once all passes have been applied, a Fortran 77 back-end, created speci�cally
for CPPC, reads the modi�ed AST and generates the Fortran 77 output.

3.4.2. Sharing code between the C and Fortran 77 compilers

Since both the C and the Fortran 77 compiler use the same basic AST, most
of the code used for analyses and transformations is usable by the compilers of
both programming languages. Some constructs, however, need a slightly di�erent
treatment. In order to share as much code as possible, the implementation of the
compilation passes uses the template method design pattern [28]. Analyses that
need di�erent versions have a common implementation depending on some abstract
methods, which are then implented in language-dependent classes. The operations
that di�er and therefore need these pattern to be used are:

Insertion of control �ow code: Two actions di�er when inserting control �ow
code. First, the number and types of variables inserted to orchestrate the

3.4 Implementation details 89

restart jumps. While the C version uses an array of void * values, Fortran
77-style computed gotos do not require such variable. Also, since the Fortran
77 version of CPPC_JUMP_NEXT() is a subroutine rather than a function, it
adds a CPPC_JUMP_TEST variable to store its results. Besides, the conditional
jumps code is di�erent due to the di�erences in computed gotos syntax.

Language-dependent transforms: As detailed in Section 3.2.8.

Pointers: All the transformations that depend on whether the accessed vari-
ables are pointers or statically allocated are only present in the C version of
the compiler. These kind of operations include determining whether a variable
is static or dynamic, obtaining the size of a variable, and obtaining the base
memory address for a variable.

CPPC calls: Some CPPC library functions have di�erent signatures for C
and Fortran 77. Thus, the code that inserts these calls into the application is
di�erent for both compilers.

Analysis of language-speci�c AST objects: Some of the representations of the
code are speci�c to one of the languages. Examples of these are implied do

loops in Fortran 77, or for loops in C. The classes in charge of AST analysis,
further described in the next subsection, are specialized so that superclasses
contain analysis methods for common structures, while the subclasses contain
analysis code for language-speci�c constructs only.

3.4.3. AST analyzers

Performing interprocedural analyses on the entire application is a complex pro-
cess, that includes many interactions between the di�erent levels of the abstract
representation. The AST is composed primarily of objects belonging to two class
hierarchies: statements and expressions. Classes in charge of performing interpro-
cedural analyses, such as those for performing the data �ow analysis, traverse the
tree in a depth-�rst fashion, beginning with statements and eventually accessing
their contained expressions. Thus, they need to have a method for processing each
di�erent class in each of the hierarchies. The normal approach for solving this
design problem would be to use a visitor pattern [28]. However, this would re-
quire both the statements and expressions hierarchies to be modi�ed in order to
accept their corresponding visitors. To avoid modifying the Cetus core, a variation

90 Chapter 3. CPPC Compiler

Figure 3.11: AST analyzer implementation by instantiation of the method dispatcher

of the visitor pattern taking advantage of the Java re�ection interface was imple-
mented. An example for a class analyzing statements is depicted in Figure 3.11.
The MethodDispatcher is a an abstract Java Generic implementing a single oper-
ation: accessing the Java re�ection interface to fetch a method able to process an
object of a given class t in the T hierarchy. AST analyzers are implemented through
instantiation of this Generic. For instance, the StatementAnalyzer class binds the
template parameter T to the Cetus Statement superclass, and implements methods
for analyzing each of its subclasses. The only provided public method accepts a
CppcStatement, introduced in Section 3.2.4. It fetches the contained statement,
and issues a dispatch() petition asking for the appropriate method for analyzing
it. The dispatcher answers with the only protected method implemented by the
StatementAnalyzer that accepts an object of the speci�ed class of statement (e.g.
DeclarationStatement, ExpressionStatement, etc.). Thus, visitors for each of
the AST hierarchies are implemented without modi�cations to the original codes.

However, accessing the Java re�ection interface is a very ine�cient operation.
The compiler, in a typical analysis of a parallel code, may perform millions of
calls to the dispatch function. In order to alleviate the re�ection overhead, the
MethodDispatcher class includes an associative cache linking subclasses of T and
their corresponding processing methods. Since the target hierarchies do not have a
large number of members the cache will quickly be �lled, e�ectively neglecting the

3.5 Related work 91

penalization for using the re�ection interface.

3.5. Related work

Most checkpointing approaches in the literature perform structural analyses and
source code modi�cations to instrument checkpointing insertion. Many of them,
however, leave the insertion of checkpoints to be manually performed by the user,
while automatically performing the remaining instrumentation (variable storage, re-
covery, control �ow, etc.). Porch [51] and C3 [13�15] require that the user inserts
checkpoint calls in the code. These calls will only trigger an actual checkpoint
according to a frequency timer. These �potential checkpoints� were originally in-
troduced by CATCH GCC [39], which also automated their insertion. A potential
checkpoint was introduced at the beginning of subroutines, and at the �rst line inside
a loop. This checkpoint placement guaranteed, in the general case, that potential
checkpoint calls would be executed often enough so as to provide a checkpointing
frequency reasonably close to the desired one. However, this approach cannot be fol-
lowed by CPPC, where checkpointing frequencies are not de�ned in temporal terms,
due to the need to statically coordinate all processes independently of how long they
take to progress through the application's execution.

For checkpointing schemes that do not use runtime coordination, such as CPPC,
checkpoints have to be inserted at places where the global consistency of the ap-
proach is guaranteed. When working with implicitly parallel languages, the compiler
is able to use the native constructions for parallelism to extract information about
safe places for checkpointing. Such is the case of the work in ZPL by Choi et al. [20],
where safe communication-free checkpoint ranges are detected, and a checkpoint in-
serted at the single location in the range with the fewest live variables.

When working with explicit communication interfaces, such as MPI, the commu-
nication pattern is user-de�ned. The compiler has to interpret the communication
statements inserted in the code, and perform a communication matching to �nd safe
locations for checkpointing. Some analysis models have been developed with the goal
of testing the correctness of the communication pattern in an application. However,
pursuing correctness veri�cation is a tougher problem than �nding safe regions in the
code, and these models typically present strong limitations, such as not being able
to deal with non-blocking communications or wildcard receives (MPI_ANY_SOURCE
and MPI_ANY_TAG) [59].

92 Chapter 3. CPPC Compiler

Performing static communication analyses typically involves the use of MPI con-
trol �ow graphs [58], that extend the concept of a control �ow graph with the
introduction of communication edges that connect communication nodes. Since cor-
rectness tests are not one of their goals, they assume that the communications are
correct and conservatively represent indeterminacies by drawing all possible commu-
nication edges between the nodes involved. A node in the graph is considered to be a
safe point if there is no communication edge connecting one of its ancestors with one
of its successors. CPPC uses the same approach as described for the analysis, except
that no graph is used. Since our goal is not to obtain a representation of the com-
munication pattern in the application, but rather, to simply categorize points in the
code as either safe or non-safe, the graph may be ommitted, and the communication
bu�er object previously described used for representing pending communications at
each point in the code. Not building the graph has several advantages in terms
of e�ciency. Mainly, it minimizes memory consumption and does not require the
analysis of the graph resulting from the compilation pass.

With regards to the automatic checkpoint insertion, some theoretical approaches
calculating the optimal mathematical solution to the checkpoint placement problem
exist [67, 69]. However, these assume that all involved parameters are known. This
is not the case under CPPC, where the execution environment is not assumed to be
�xed due to its inherent characteristic of portability.

Checkpoint �le sizes are tightly related to scalability issues when checkpointing
parallel applications. Thus, di�erent approaches to reduce the amount of data stored
in state �les have been studied during the last decade. Plank et al. proposed in [48] a
memory exclusion technique based on performing a dead variable analysis to identify
memory regions which can be safely excluded from the checkpoint process. CPPC
implements a similar technique, based on performing a live variable analysis at
compile time to identify those variables that should be included in the checkpoint
�le.

3.6. Summary

This chapter has covered both the design and implementation of the CPPC
source-to-source compiler, in charge of automating the integration of a parallel or
sequential application with the CPPC library. It is implented in Java, o�ering
widespread portability, using the Cetus framework, which has been extended to

3.6 Summary 93

support Fortran 77 in addition to C codes. The compiler performs all necessary
analyses and transformations to the code, including static data �ow, communica-
tion analyses and the insertion of checkpoints at key places in the code. All these
analyses have been thoroughly described, as well as their implementation details
focusing on the design decisions taken to enable the reusability of the platform. By
using a semantic catalog, the compiler is able to analyze a variety of APIs for com-
munications, �le I/O, etc., and thus it is not tied to any speci�c interface such as
MPI. Concluding the chapter, the related work has been covered, giving an overview
of other existing techniques for checkpoint insertion and communication analysis.

Chapter 4

Experimental Results

4.1. Introduction

In order to conduct the experimental evaluation of the CPPC checkpointing
framework, two di�erent sets of experiments were designed and executed to sepa-
rately assess the performance of both the CPPC compiler and the CPPC library.
Twelve applications were selected for testing, separated into three di�erent types.
First, the eight applications in the NPB-MPI v3.1 benchmarks [3]. These have
short runtimes, which makes them ill-suited choices for checkpoint insertion. How-
ever, they are well-known and widespread, which makes them a good choice for
comparison purposes. The next two programs are scienti�c applications in use
in the Galician Supercomputing Center (CESGA), called CalcuNetw and Fekete.
While these applications do not have particularly long runs, they are good choices
for evaluating the performance of the framework in applications currently in use
in supercomputing centers. Finally, two large-scale applications called DBEM and
STEM were also added to test the tool in long running programs. Table 4.1 gives
more details about the test applications used.

This chapter is divided into two sections. Section 4.2 covers experimental results
for the CPPC compiler. Section 4.3 details execution tests for the CPPC library.

95

96 Chapter 4. Experimental Results

T
ab
le
4.
1:

Su
m
m
ar
y
of

te
st
ap
pl
ic
at
io
ns

S
o
u
rc
e

A
p
p
li
ca
ti
o
n

D
e
sc
ri
p
ti
o
n

N
A
S
N
P
B
-M

P
I
v3
.1

B
T

A
si
m
ul
at
ed

C
D
F
ap
pl
ic
at
io
n
th
at

us
es

an
im
pl
ic
it
al
go
ri
th
m

to
so
lv
e
3-

di
m
en
si
on
al

co
m
pr
es
si
bl
e
N
av
ie
r-
St
ok
es

eq
ua
ti
on
s.

T
he

�n
it
e
di
�
er
en
ce
s

so
lu
ti
on

to
th
e
pr
ob
le
m

is
ba
se
d
on

an
A
lt
er
na
te

D
ir
ec
ti
on

Im
pl
ic
it
(A

D
I)

ap
pr
ox
im
at
e
fa
ct
or
iz
at
io
n
th
at

de
co
up
le
s
th
e

x
,
y
an
d

z
di
m
en
si
on
s.
T
he

re
su
lt
in
g
sy
st
em

s
ar
e
B
lo
ck
-T

ri
di
ag
on
al

of
5x

5
bl
oc
ks

an
d
ar
e
so
lv
ed

se
-

qu
en
ti
al
ly

al
on
g
ea
ch

di
m
en
si
on
.

C
G

U
se
s
a
C
on
ju
ga
te
G
ra
di
en
t
m
et
ho
d
to

co
m
pu
te

an
ap
pr
ox
im
at
io
n
to

th
e

sm
al
le
st
ei
ge
nv
al
ue

of
a
la
rg
e,
sp
ar
se
,
un
st
ru
ct
ur
ed

m
at
ri
x.

E
P

E
m
ba
rr
as
si
ng
ly
P
ar
al
le
l
b
en
ch
m
ar
k.

It
ge
ne
ra
te
s
pa
ir
s
of

G
au
ss
ia
n
ra
n-

do
m

de
vi
at
es

ac
co
rd
in
g
to

a
sp
ec
i�
c
sc
he
m
e.

F
T

C
on
ta
in
s
th
e
co
m
pu
ta
ti
on
al

ke
rn
el

of
a
fa
st
F
ou
ri
er
T
ra
ns
fo
rm

(F
F
T
)-

ba
se
d
sp
ec
tr
al

m
et
ho
d.

It
p
er
fo
rm

s
th
re
e
1-
di
m
en
si
on
al

F
F
T
's
,
on
e
fo
r

ea
ch

di
m
en
si
on
.

IS
In
te
ge
r
S
or
t:
It
w
or
ks

w
it
h
a
lis
t
of
sm

al
li
nt
eg
er
va
lu
es
,
no
t
re
al
ly
so
rt
in
g

th
em

bu
t
as
si
gn
in
g
ev
er
y
lis
t
m
em

b
er

a
nu
m
b
er

in
di
ca
ti
ng

th
e
p
os
it
io
n
in

th
e
so
rt
ed

lis
t.

L
U

A
si
m
ul
at
ed

C
F
D

ap
pl
ic
at
io
n
th
at

us
es

a
sy
m
m
et
ri
c
su
cc
es
si
ve

ov
er
-

re
la
xa
ti
on

(S
SO

R
)
m
et
ho
d
to

so
lv
e
a
se
ve
n-
bl
oc
k-
di
ag
on
al
sy
st
em

re
su
lt
-

in
g
fr
om

�n
it
e-
di
�
er
en
ce

di
sc
re
ti
za
ti
on

of
th
e
3-
di
m
en
si
on
al
N
av
ie
r-
St
ok
es

eq
ua
ti
on
s
by

sp
lit
ti
ng

it
in
to

bl
oc
k
L
ow

er
an
d
U
pp

er
tr
ia
ng
ul
ar

sy
st
em

s.

M
G

U
se
s
a
V
-c
yc
le
M
ul
ti
G
ri
d
to

co
m
pu
te

th
e
so
lu
ti
on

of
th
e
3-
di
m
en
si
on
al

sc
al
ar

P
oi
ss
on

eq
ua
ti
on
.
T
he

al
go
ri
th
m

w
or
ks

co
nt
in
uo
us
ly

on
a
se
t
of

gr
id
s
th
at

ar
e
m
ad
e
b
et
w
ee
n
co
ar
se

an
d
�n
e.

4.1 Introduction 97
T
ab
le
4.
1:

Su
m
m
ar
y
of

te
st
ap
pl
ic
at
io
ns

(c
on
ti
nu
ed
)

S
o
u
rc
e

A
p
p
li
ca
ti
o
n

D
e
sc
ri
p
ti
o
n

N
A
S
N
P
B
-M

P
I
v3
.1

SP

A
si
m
ul
at
ed

C
F
D

ap
pl
ic
at
io
n
th
at

ha
s
a
si
m
ila
r
st
ru
ct
ur
e
to

B
T
.
T
he

�n
it
e
di
�
er
en
ce
s
so
lu
ti
on

to
th
e
pr
ob
le
m

is
ba
se
d
on

a
B
ea
m
-W

ar
m
in
g

ap
pr
ox
im
at
e
fa
ct
or
iz
at
io
n
th
at

de
co
up
le
s
th
e

x
,
y
an
d

z
di
m
en
si
on
s.
T
he

re
su
lt
in
g
sy
st
em

ha
s
S
ca
la
r
P
en
ta
di
ag
on
al
ba
nd
s
of

lin
ea
r
eq
ua
ti
on
s
th
at

ar
e
so
lv
ed

se
qu
en
ti
al
ly

al
on
g
ea
ch

di
m
en
si
on
.

C
E
SG

A
C
al
cu
N
et
w
[4
3]

C
al
cu
la
te
s
so
m
e
ch
ar
ac
te
ri
za
ti
on

m
ea
su
re
m
en
ts

in
a
gi
ve
n
ne
tw
or
k,

co
n-

si
st
in
g
of

a
se
t
of

no
de
s
or

ve
rt
ic
es

jo
in
ed

to
ge
th
er

in
pa
ir
s
by

lin
ks

or
ed
ge
s,
an
d
co
m
pa
re
s
it
w
it
h
a
nu
m
b
er

of
ra
nd
om

ne
tw
or
ks

sp
ec
i�
ed

by
th
e
us
er
.
T
he

pr
og
ra
m

ca
lc
ul
at
es

th
e
su
bg
ra
ph

ce
nt
ra
lit
y
(S
C
),
SC

od
d,

SC
ev
en
,
bi
pa
rt
iv
it
y,
ne
tw
or
k
co
m
m
un
ic
ab
ili
ty
,
an
d
ne
tw
or
k
co
m
m
un
ic
a-

bi
lit
y
fo
r
co
nn
ec
te
d
no
de
s.

Fe
ke
te

[1
7]

D
et
er
m
in
es

th
e
p
os
it
io
n
of

a
ce
rt
ai
n
nu
m
b
er

of
p
oi
nt
s
on

a
2-
di
m
en
si
on
al

sp
he
re

su
ch

th
at

th
e
p
ot
en
ti
al
en
er
gy

pr
od
uc
ed

by
th
e
in
te
ra
ct
io
n
of
th
es
e

p
oi
nt
s
is
m
in
im
um

.
T
hi
s
is
th
e
7t
h
of

th
e
Sm

al
e'
s
pr
ob
le
m
s
[6
0]
.

D
B
E
M

[3
0]

C
ra
ck

gr
ow

th
an
al
ys
is
us
in
g
th
e
D
ua
l
B
ou
nd
ar
y
E
le
m
en
t
M
et
ho
d.

T
he

an
al
ys
is

le
ad
s
to

a
la
rg
e
nu
m
b
er

of
di
sc
re
ti
ze
d
eq
ua
ti
on
s
th
at

gr
ow

at
ev
er
y
st
ep

w
he
n
th
e
cr
ac
k
gr
ow

th
is

ev
al
ua
te
d.

It
so
lv
es

th
e
re
su
lt
in
g

de
ns
e
lin
ea
r
sy
st
em

us
in
g
th
e
G
M
R
E
S
it
er
at
iv
e
m
et
ho
d,

re
ga
rd
ed

as
th
e

m
os
t
ro
bu
st
of

th
e
K
ry
lo
v
su
bs
pa
ce

it
er
at
iv
e
m
et
ho
ds
.

ST
E
M
-I
I
[4
2]

U
se
d
to

kn
ow

in
ad
va
nc
e
ho
w
th
e
m
et
eo
ro
lo
gi
ca
lc
on
di
ti
on
s,
ob
ta
in
ed

fr
om

a
m
et
eo
ro
gi
ca
l
pr
ed
ic
ti
on

m
od
el
,
w
ou
ld

a�
ec
t
th
e
em

is
si
on
s
of

p
ol
lu
ta
nt
s

by
th
e
p
ow

er
pl
an
t
of

A
s
P
on
te
s
(A

C
or
uñ
a,
Sp
ai
n)

in
or
de
r
to

fu
l�
ll
E
U

re
gu
la
ti
on
s.

T
he

un
de
rl
yi
ng

eq
ua
ti
on

is
a
ti
m
e-
de
p
en
de
nt
,
3-
di
m
en
si
on
al

pa
rt
ia
l
di
�
er
en
ti
al
at
m
os
fe
ri
c-
di
�
us
io
n
eq
ua
ti
on
.

98 Chapter 4. Experimental Results

4.2. Compiler

This section focuses on two main issues when using the CPPC compiler to instru-
ment parallel applications: correction of the resulting code, covered in Section 4.2.1;
and the performance obtained when executing the necessary analyses and transfor-
mations, detailed in Section 4.2.2.

4.2.1. Analysis of the instrumented codes

In this section, the results of the checkpoint insertion analyses are shown. The
following subsections detail the results of the �rst and second thresholding steps of
the checkpoint insertion algorithm for all the test applications, and compare them
to the optimal manual checkpoint placement performed by the authors during the
initial tests of the applications. While some extra checkpoints are inserted in appli-
cations with similar heuristic values for both time-consuming loops and negligible
ones, the compiler never leaves a time-consuming loop without checkpointing. This
means that the analysis behaves in a conservative way. Thus, while the resulting
code may not be completely optimal, application progress is guaranteed.

Regarding the communication matching, the compiler correctly detects safe points
for all test applications.

• NAS BT

Figure 4.1(a) shows the heuristic h(l) as calculated for the NAS BT application.
The �gure is the same as the one shown for exemplifying the checkpoint insertion
algorithm described in Section 3.2.7. The �rst step of the thresholding process
selects a subset of four loop nests as candidates for checkpoint insertion. The values
of h(l) for these loops are detailed in Table 4.2. Loop #1 corresponds to the main
computational loop in BT, and is the place where a manual checkpoint was inserted
by the authors in the preliminary application tests. The second thresholding step,
shown in Figure 4.1(b), determines that the loops in C0 are responsible for the
56.94% of the total variation of h(l) in the H subset, and therefore selects only
loop #1 for checkpoint insertion, which matches the optimal checkpoint insertion in
the manual analysis.

4.2 Compiler 99

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.1: Checkpoint insertion for NAS BT

100 Chapter 4. Experimental Results

Table 4.2: Detail of loops selected by the shape-based threshold for NAS BT
Loop # File Line Statements Accesses h(l)

1 bt.f 179 2075 5547 0.7755
2 exact_rhs.f 24 107 490 3.1149
3 initialize.f 44 30 132 4.2368
4 error.f 25 19 47 4.8837

Total program statements 5084
Total program accesses 13502

• NAS CG

Figure 4.2(a) shows the heuristic h(l) calculated for the NAS CG application.
The �rst step of the thresholding process selects a subset of �ve loop nests as can-
didates for checkpoint insertion. The values of h(l) for these loops are detailed in
Table 4.3. Loop #1 corresponds to the main computational loop in CG, and is the
place where a manual checkpoint was inserted by the authors in the preliminary
application tests. The second thresholding step, shown in Figure 4.2(b), creates
two di�erent clusters, and selects C0 for checkpointing, responsible for 59.16% of
the total variation of h(l) in the H subset. Two loops are included in C0, loop #2
being a exact copy of loop #1. The only di�erence is that it performs a single
untimed iteration which initializes all code and data page tables, and that it does
not perform the conditional statement found in line 500 in �le cg.f. This accounts
for the di�erence in h(l) for both loops, which is negligible as shown in the tables.
After executing this single-iteration loop, the application reinits and starts timing.
The compiler was not programmed to detect single-iteration loops as not real loops,
and therefore this loop is selected as well for checkpointing, which may create an
additional redundant checkpoint depending on the runtime con�guration of the li-
brary, particularly on whether or not the user decides to activate checkpointing each
time a new checkpoint is reached, regardless of the number of calls performed to the
checkpoint function.

• NAS EP

Figure 4.3(a) shows the heuristic h(l) as calculated for the NAS EP application.
The �rst step of the thresholding process selects a subset of two loop nests as can-
didates for checkpoint insertion. The values of h(l) for these loops are detailed in

4.2 Compiler 101

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.2: Checkpoint insertion for NAS CG

102 Chapter 4. Experimental Results

Table 4.3: Detail of loops selected by the shape-based threshold for NAS CG
Loop # File Line Statements Accesses h(l)

1 cg.f 441 97 220 1.0220
2 cg.f 344 96 217 1.0329
3 cg.f 1453 28 20 2.6160
4 cg.f 1606 14 10 3.1723
5 cg.f 910 4 10 3.7163

Total program statements 354
Total program accesses 647

Table 4.4: Detail of loops selected by the shape-based threshold for NAS EP
Loop # File Line Statements Accesses h(l)

1 ep.f 189 16 23 1.3285
2 ep.f 165 2 2 3.2923

Total program statements 70
Total program accesses 114

Table 4.4. Loop #1 corresponds to the main computational loop in EP, and is the
place where a manual checkpoint was inserted by the authors in the preliminary
application tests. The second thresholding step, shown in Figure 4.3(b), assigns
each point in H to a di�erent cluster, and selects loop #1 for checkpoint insertion,
responsible for 100% of the total variation of h(l) in the H subset. Note that any
situation in which only two points reach the cluster-based thresholding step will
result in the algorithm selecting only the one with the bigger h(l) value. This makes
perfect sense, since the shape-based threshold would not select only two loop nests
if they had similar heuristic values.

• NAS FT

Figure 4.4(a) shows the heuristic h(l) as calculated for the NAS FT application,
which is larger and structurally more complex than the two previous ones. The �rst
step of the thresholding process selects a subset of six loop nests as candidates for
checkpoint insertion. The values of h(l) for these loops are detailed in Table 4.5.
Loop #1 corresponds to the main computational loop in FT, and is the place where
a manual checkpoint was inserted by the authors in the preliminary application
tests. The second thresholding step, shown in Figure 4.4(b), creates three di�erent

4.2 Compiler 103

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.3: Checkpoint insertion for NAS EP

104 Chapter 4. Experimental Results

Table 4.5: Detail of loops selected by the shape-based threshold for NAS FT
Loop # File Line Statements Accesses h(l)

1 ft.f 159 189 337 1.2005
2 ft.f 676 9 24 3.5398
3 ft.f 689 9 24 3.5398
4 ft.f 702 9 24 3.5398
5 ft.f 1016 7 9 4.0750
6 ft.f 271 3 7 4.5521

Total program statements 743
Total program accesses 1261

clusters, and selects only loop #1 for checkpoint insertion as responsible for 69.80%

of the total variation of h(l) in the H subset, which matches the optimal checkpoint
insertion in the manual analysis.

• NAS IS

Figure 4.5(a) shows the heuristic h(l) as calculated for the NAS IS application,
the only of the NPB ones written in C. As can be seen, the shape of h(l) is quite
atypical, due to the fact that this application is very small and all loops have similar
sizes. In fact, this is the application with the smallest total variation in h(l), and
the one in which h(l) most closely resembles a straight line. This causes the �rst
step of the thresholding process to select a high number of loop nests as candidates
for checkpoint insertion, �ve out of the total six in IS. The values of h(l) for these
loops are detailed in Table 4.6. Loop #2 corresponds to the main computational
loop, and the only one manually selected in the preliminary application tests. The
second thresholding step, shown in Figure 4.5(b), creates three di�erent clusters. It
does not select C0 only, since it is only responsible for 41.41% of the total variation
of h(l) in the H subset. Instead, it selects both C0 and C1, which are together
responsible for 61.94% of such variation.

Although the checkpoint insertion algorithm does indeed select the main compu-
tational loop for checkpoint insertion, thus guaranteeing execution progress in the
presence of failures, two other loops are conservatively selected in addition to it,
making it a non-optimal choice.

4.2 Compiler 105

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.4: Checkpoint insertion for NAS FT

106 Chapter 4. Experimental Results

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.5: Checkpoint insertion for NAS IS

4.2 Compiler 107

Table 4.6: Detail of loops selected by the shape-based threshold for NAS IS
Loop # File Line Statements Accesses h(l)

1 is.c 425 90 154 0.6570
2 is.c 976 56 39 1.4595
3 is.c 396 36 59 1.4716
4 is.c 387 23 38 1.8573
5 is.c 882 16 10 2.5947

Total program statements 242
Total program accesses 260

Table 4.7: Detail of loops selected by the shape-based threshold for NAS LU
Loop # File Line Statements Accesses h(l)

1 ssor.f 78 452 2251 1.0466
2 erhs.f 383 43 151 3.4828
3 erhs.f 118 33 116 3.7122

Total program statements 1961
Total program accesses 7415

• NAS LU

Figure 4.6(a) shows the heuristic h(l) as calculated for the NAS LU application.
The �rst step of the thresholding process selects a subset of three loop nests as
candidates for checkpoint insertion. The values of h(l) for these loops are detailed
in Table 4.7. Loop #1 corresponds to the main computational loop in LU, and is
the place where a manual checkpoint was inserted by the authors in the preliminary
application tests. The second thresholding step, shown in Figure 4.6(b), creates two
clusters, and selects only loop #1 for checkpoint insertion as responsible for 91.39%

of the total variation of h(l) in the H subset, which matches the optimal checkpoint
insertion in the manual analysis.

• NAS MG

Figure 4.7(a) shows the heuristic h(l) as calculated for the NAS MG application.
The �rst step of the thresholding process selects a subset of two loop nests as can-
didates for checkpoint insertion. The values of h(l) for these loops are detailed in
Table 4.8. Loop #1 corresponds to the main computational loop in MG, and is the

108 Chapter 4. Experimental Results

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.6: Checkpoint insertion for NAS LU

4.2 Compiler 109

Table 4.8: Detail of loops selected by the shape-based threshold for NAS MG
Loop # File Line Statements Accesses h(l)

1 mg.f 245 503 1354 0.9707
2 mg.f 2100 27 46 3.5997

Total program statements 1597
Total program accesses 3862

Table 4.9: Detail of loops selected by the shape-based threshold for NAS SP
Loop # File Line Statements Accesses h(l)

1 sp.f 150 927 1783 1.0077
2 exact_rhs.f 23 107 490 2.5044
3 initialize.f 45 30 132 3.6262
4 error.f 26 19 47 4.2731
5 initialize.f 103 12 40 4.5427

Total program statements 2801
Total program accesses 6009

place where a manual checkpoint was inserted by the authors in the preliminary ap-
plication tests. As in the NAS EP application, the second thresholding step, shown
in Figure 4.7(b) creates two clusters, and selects only one loop for checkpointing
which is responsible for 100% of the variation of h(l) in the H subset. This behavior
matches the optimal checkpoint insertion in the manual analysis.

• NAS SP

The structure of the NAS SP application is very similar to that of the NAS BT,
thus the outcome of the checkpoint insertion analysis is very similar to the outcome
for the former. The �rst and second thresholding steps are shown in Figures 4.8(a)
and 4.8(b), respectively. Values for h(l) in the H subset, which contains �ve loops,
are detailed in Table 4.9. The cluster-based thresholding step creates three clusters.
C0 is only responsible for a 42.34% of the total variation of h(l) in the H subset, so
both C0 and C1 get checkpointed, accounting for a 92.37% of the variation of h(l).
Manual checkpointing insertion is limited to the loop nest in C0, which means that
all three loops in C1 are conservatively checkpointed.

110 Chapter 4. Experimental Results

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.7: Checkpoint insertion for NAS MG

4.2 Compiler 111

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.8: Checkpoint insertion for NAS SP

112 Chapter 4. Experimental Results

Table 4.10: Detail of loops selected by the shape-based threshold for CESGA Cal-
cuNetw

Loop # Statements Accesses h(l)

1 162 180 0.7548
2 28 14 2.6263
3 14 11 3.0321
4 9 3 3.7883

Total program statements 392
Total program accesses 423

• CESGA CalcuNetw

The code of the following applications is not in the public domain, and therefore
it makes no sense to give details about code locations of the selected loops. Heuristic
values for loop nests in the H subset, however, are included in Table 4.10 for com-
pletitude. It is interesting to detail the shape of h(l) and how the insertion algorithm
behaves, since these are naturally better candidates for checkpoint insertion than
the NAS Parallel Benchmarks. Figure 4.9(a) shows the �rst step of the thresholding
algorithm, while Figure 4.9(b) depicts the second one. As can be seen, the shape of
the application is similar to the larger ones in the NPB set. The shape-based thresh-
old selects a subset of four loop nests as candidates for checkpoint insertion, which
are categorized in three di�erent clusters by the second thresholding step. Loop #1
is then selected for checkpoint insertion as it contains 61.70% of the variation of h(l)

in the H subset. This loop is the main computational loop in the application, and
the decision matches the manual one performed during the initial assessment of the
application.

• CESGA Fekete

Again, the automatic analysis for this application matches the outcome of the
manual decision process. The �rst and second thresholding steps are shown in
Figures 4.10(a) and 4.10(b), respectively. Values for h(l) in the H subset are detailed
in Table 4.11. Two clusters are created in the second thresholding step. Loop #1
in C0 is the only nest to be checkpointed, being responsible for 68.84% of the total
variation of h(l) in the H subset.

4.2 Compiler 113

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.9: Checkpoint insertion for CESGA CalcuNetw

114 Chapter 4. Experimental Results

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.10: Checkpoint insertion for CESGA Fekete

4.2 Compiler 115

Table 4.11: Detail of loops selected by the shape-based threshold for CESGA Fekete
Loop # Statements Accesses h(l)

1 77 181 0.3077
2 9 9 2.5288
3 2 4 3.5342

Total program statements 119
Total program accesses 238

• DBEM

This is the biggest application in the experimental set, with a total of 92 loop
nests being considered by the compiler. Out of them, 10 are selected by the shape-
based threshold, as shown in Figure 4.11(a), and categorized into �ve di�erent clus-
ters by the second thresholding method detailed in Figure 4.11(b). Values for h(l)

in the H subset are detailed in Table 4.12. Loop #1 is responsible for the creation
of the equation systems that are resolved later in loop #2, which is the main com-
putational loop of the application. The manual analysis performed in the initial
assessment of the application determined that both loops should be checkpointed.
The automatic analysis decides to checkpoint both, and also two more loops that are
conservatively selected. Although loop #2 is considerably bigger than both of them,
the huge size of loop #1 makes them comparable when in the context of the entire
application. Together, C0 and C1 are responsible for 65.69% of the total variation
of h(l) in H.

• STEM-II

This application, the second biggest in the experimental set, has most of its code
inside a single loop, which is the one manually selected for checkpointing during the
initial tests and also the only one checkpointed by the automatic checkpoint insertion
algorithm. Figures 4.12(a) and 4.12(b) show the �rst and second thresholding steps,
respectively. As can be seen in Table 4.13, loop #1 is so big that it completely
neglects the rest of the nests in the application, and is the only selected from the
two belonging to the H subset.

116 Chapter 4. Experimental Results

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.11: Checkpoint insertion for DBEM

4.2 Compiler 117

(a) First step: shape-based threshold

(b) Second step: cluster-based threshold

Figure 4.12: Checkpoint insertion for STEM-II

118 Chapter 4. Experimental Results

Table 4.12: Detail of loops selected by the shape-based threshold for DBEM
Loop # Statements Accesses h(l)

1 1924 2869 0.5017
2 333 438 2.0797
3 214 426 2.2838
4 182 457 2.3236
5 135 237 2.7385
6 84 180 3.0640
7 89 66 3.4747
8 52 95 3.5499
9 60 69 3.6266
10 53 41 3.9065

Total program statements 3330
Total program accesses 5262

Table 4.13: Detail of loops selected by the shape-based threshold for STEM-II
Loop # Statements Accesses h(l)

1 1673 4305 0.3297
2 9 12 5.1538

Total program statements 2731
Total program accesses 5635

4.2.2. Compilation times

A summary of the characteristics of the test applications, including number of
�les, lines of code (LOCs), time it takes the CPPC compiler to instrument them,
number of loop nests in the code, and number of checkpoints and variable registra-
tions inserted by the CPPC compiler is shown in Table 4.14. Compilation times
were measured in a desktop machine, with an Intel Core2 Duo CPU at 3.00 Ghz.
and 1 GB of RAM. Although the CPPC compiler is a experimental tool and is not
optimized for production use, it can be seen that compile times are acceptable for
all test applications, and mostly dependent on the number of lines of code of the
source. The higher compile time is obtained for the DBEM application, with 12533
LOCs, and is 77.14 seconds.

A more in-depth analysis of compilation times is given in Table 4.15, where they
have been broken down into the times for each of the analyses described in Chap-
ter 3. Times for code parsing, insertion of initialization and shutdown CPPC calls,

4.3 Library 119

instrumentation of non-portable calls and open �les, conversion to CPPC state-
ments, data �ow analysis, communication analysis, checkpoint insertion, language-
dependent transforms and code generation are detailed. Although the number of
applications is not nearly enough as to develop a complete mathematical model of
execution times, some tendencies can be inferred from these times. Most of the anal-
yses run in linear time with respect to the lines of code of the compiled application.
Particularly, code parsing, the insertion of the CPPC initialization and shutdown
calls, the analysis of non-portable calls, instrumentation of open �les, transforma-
tion to CPPC statements, and language-dependent transforms appear to be O(n),
being n the number of LOCs in the code. The data �ow analyses are O(n) as well,
but very dependent on the programming language the application is coded in. If
a linear regression model were �tted to the times for the data �ow analysis, two
di�erent models would have to be created for the analysis of C and Fortran 77 ap-
plications. The communications analysis tends to O(n2). The checkpoint insertion
analysis does not depend on the LOCs of the application, but rather on the number
of loop nests (#L), being O(#L2). As for the times described as �code generation�,
they include many compilation passes, such as insertion of the actual registration
calls for restart-relevant variables, control �ow code, etc. Thus, it cannot be an-
alyzed precisely as a whole, but should be broken down in each of the individual
analysis that are performed. However, as a general pattern, it may be characterized
as O(n2).

4.3. Library

Runtime tests of the CPPC library were performed on the Finis Terrae super-
computer hosted by CESGA (Galician Supercomputing Center). It consists of 144
computation nodes:

142 HP Integrity rx7640 nodes with 16 Itanium Montvale cores and 128 GB
of RAM per node.

1 HP Integrity Superdome node, with 128 Itanium Montvale cores and 1024
GB of RAM.

1 HP Integrity Superdome node, with 128 Itanium 2 cores and 384 GB of
RAM.

120 Chapter 4. Experimental Results

T
able

4.14:
Statistics

and
com

pilation
tim

es
for

test
applications

A
p
p
lica

tio
n

F
ile
s

L
O
C
s

C
o
m
p
ile

tim
e

L
o
o
p
n
e
sts

#
C
h
k
p
ts.

#
R
e
g
iste

rs

NAS NPB-MPI v3.1

B
T

18
3650

14.19
s.

25
1

121
C
G

1
1044

2.61
s.

13
2

38
E
P

1
180

0.90
s.

4
1

14
F
T

1
1269

4.82
s.

20
1

31
IS

1
672

3.88
s.

6
3

34
L
U

25
3086

7.78
s.

35
1

74
M
G

1
1618

13.08
s.

12
1

34
SP

24
3148

13.69
s.

25
4

143

C
E
SG

A
C
alcuN

etw
5

810
57.34

s.
14

1
28

Fekete
1

182
0.86

s.
6

1
17

D
B
E
M

42
12533

77.14
s.

92
4

279
ST

E
M

110
6506

15.14
s.

24
1

94

4.3 Library 121
T
ab
le
4.
15
:
B
re
ak
do
w
n
of

co
m
pi
la
ti
on

ti
m
es

fo
r
te
st
ap
pl
ic
at
io
ns

A
p
p
li
ca
ti
o
n

T
o
ta
l
ti
m
e

P
a
rs
in
g

In
it
+
S
h
u
td
o
w
n

N
o
n
-p
o
rt
a
b
le

O
p
e
n
�
le
s

C
P
P
C
st
m
ts
.

NASNPB-MPIv3.1

B
T

14
.1
9
s.

29
74

m
s.

34
6
m
s.

10
6
m
s.

11
0
m
s.

44
5
m
s.

C
G

2.
61

s.
41
5
m
s.

80
m
s.

15
m
s.

17
m
s.

84
m
s.

E
P

0,
9
s.

18
5
m
s.

55
m
s.

6
m
s.

6
m
s.

14
m
s.

F
T

4.
82

s.
99
2
m
s.

15
9
m
s.

43
m
s.

48
m
s.

26
4
m
s.

IS
3.
88

s.
39
5
m
s.

77
m
s.

22
m
s.

23
m
s.

22
m
s.

L
U

7.
78

s.
15
64

m
s.

20
3
m
s.

57
m
s.

61
m
s.

28
2
m
s.

M
G

13
.0
8
s.

12
78

m
s.

21
7
m
s.

60
m
s.

64
m
s.

33
2
m
s.

SP
13
.6
9
s.

18
15

m
s.

19
9
m
s.

57
m
s.

60
m
s.

23
0
m
s.

C
E
SG

A
C
al
cu
ne
tw

24
.5
5
s.

90
6
m
s.

11
0
m
s.

96
m
s.

10
4
m
s.

13
0
m
s.

Fe
ke
te

0.
86

s.
18
9
m
s.

54
m
s.

4
m
s.

6
m
s.

12
m
s.

D
B
E
M

77
.1
4
s.

49
75

m
s.

34
4
m
s.

11
7
m
s.

14
4
m
s.

44
3
m
s.

ST
E
M
-I
I

15
.1
4
s.

17
86

m
s.

22
0
m
s.

65
m
s.

82
m
s.

19
5
m
s.

A
p
p
li
ca
ti
o
n

D
a
ta

�
o
w

C
o
m
m
s.

C
h
k
p
t.
in
se
rt
io
n

L
a
n
g
u
a
g
e

C
o
d
e
g
e
n
e
ra
ti
o
n

NASNPB-MPIv3.1

B
T

31
70

m
s.

24
49

m
s.

85
1
m
s.

10
0
m
s.

28
51

m
s.

C
G

51
9
m
s.

63
6
m
s.

80
m
s.

18
m
s.

51
5
m
s.

E
P

12
3
m
s.

78
m
s.

11
m
s.

4
m
s.

22
9
m
s.

F
T

11
80

m
s.

83
7
m
s.

27
3
m
s.

46
m
s.

95
2
m
s.

IS
10
43

m
s.

16
79

m
s.

48
m
s.

19
m
s.

33
7
m
s.

L
U

19
20

m
s.

13
04

m
s.

38
8
m
s.

55
m
s.

15
65

m
s.

M
G

15
61

m
s.

77
07

m
s.

31
7
m
s.

60
m
s.

13
49

m
s.

SP
22
11

m
s.

17
56

m
s.

78
3
m
s.

52
m
s.

62
39

m
s.

C
E
SG

A
C
al
cu
ne
tw

21
95
5
m
s.

0
m
s.

19
8
m
s.

84
m
s.

99
9
m
s.

Fe
ke
te

14
6
m
s.

70
m
s.

15
m
s.

4
m
s.

17
6
m
s.

D
B
E
M

17
19
8
m
s.

15
23
3
m
s.

20
33
4
m
s.

10
1
m
s.

18
26
7
m
s.

ST
E
M
-I
I

59
46

m
s.

35
53

m
s.

14
48

m
s.

48
m
s.

13
87

m
s.

122 Chapter 4. Experimental Results

Table 4.16: Number of nodes and cores used for runtime tests for each application
Application Nodes Cores per node Total cores

N
A
S
N
P
B
-M

P
I
v3
.1 BT 3 12 36

CG

2 16 32

EP
FT
IS
LU
MG
SP 3 12 36

CESGA
CalcuNetw 1 1 1
Fekete

2 16 32DBEM
STEM-II

The nodes are conected through an In�niband 4x DDR network with a band-
with of 20 Gbps. The applications were executed on the HP Integrity rx7640 nodes.
Table 4.16 details the number of nodes used for each application in runtime tests.
Whenever possible, two nodes with 16 cores each were used for the execution. How-
ever, the NAS BT and SP applications require the number of parallel processes to
be a square, which caused the number of processes to be raised to 36, allocating 3
nodes and using 12 cores of each of them. The remaining 4 cores in each node were
allocated to prevent applications belonging to other users from being executed on
them, thus disrupting the results. CESGA CalcuNetw is a sequential application.
A whole node was allocated for its execution, while only one of its cores was used
for the tests.

Executed measurements include: generated state �le sizes, time for state �le gen-
eration, checkpointing overhead and restart times. For proving portability, cross-
restarts were executed on the Finis Terrae using state �les generated by the Muxia
cluster, hosted by the Computer Architecture Group of the University of A Coruña,
consisting of Intel Xeon 1.8 Ghz nodes, with di�erent compilers and MPI implemen-
tations than those found in the Finis Terrae.

The NAS CG, IS and SP, and DBEM applications create more than one check-
point �le during their execution. In order to provide normalized results for the
state �le sizes, state �le creation time and restart time tests, these parameters were
measured for the biggest checkpoints created in each case. This makes it easier to
provide graphical comparisons of the results for di�erent applications.

4.3 Library 123

4.3.1. State �le sizes

When using CPPC's spatially coordinated technique, the incurred overhead will
only depend on the overhead introduced by the checkpoint �le dumping. This
overhead heavily depends on the size of the data to be dumped. Thus, the �rst
parameter to be measured is how the variable level approach a�ects checkpoint
�le sizes. In order to analyze this e�ect, state �le sizes have been measured for
di�erent checkpointing con�gurations, and compared to sizes obtained using a full
checkpointer. For most applications, �le sizes also vary depending on the number of
processes involved in the execution, because the sizes of array data are modi�ed to
match the problem size. The exceptions are NAS EP, CESGA Fekete, DBEM and
STEM-II, which statically allocate a �xed array size that determines the maximum
allowed problem size. The results of this test are shown in Figures 4.13 to 4.23.
The values tagged as �Automatic� are �le sizes obtained by the automatic variable
registration included in the compiler. �Compressed� shows �le sizes using the HDF-5
writer with compression enabled. Compression is only applied to vector variables
(pointers and arrays) larger than a certain user-speci�ed limit, which in this case
was set to 2000 elements. For comparison purposes, �Optimal� shows the optimal �le
sizes obtained by a manual analysis, and �Full data� presents the sizes obtained for
a checkpointer that stores all the application data. Figure 4.24 shows a summary of
the sizes obtained for all applications using the number of processes used for runtime
tests shown in Table 4.16, and includes the CESGA CalcuNetw application, which
does not have a �gure of its own because it is a sequential application.

Sizes obtained using automatic analyses are close to the optimal ones, for most
applications. The di�erence between both is due to the registration of unnecessary
array sections because of the conservative approach of the compiler, as explained
in Section 3.2.5. Variable level checkpointing usually achieves very important size
reductions when compared to full data sizes. Table 4.17 gives the exact details on
reduction percentages for the number of processes used in runtime tests for each
application. It includes the size of the �les created by the automatic live variable
analysis, the reduction obtained with respect to the size of the �les created by a full
data checkpointer, and the optimal reduction (bracketed).

The high compression rates obtained for DBEM and STEM-II (97.86% and
96.10%, respectively) are due to the fact that these applications statically allocate
arrays which are oversized to �t a maximum problem size. This is directly related
with the fact that checkpoint sizes for these applications do not vary with the num-

124 Chapter 4. Experimental Results

Table 4.17: Performance of the automatic variable registration algorithm
Application Automatic size (MB) Reduction (Optimal)

N
A
S
N
P
B
-M

P
I
v3
.1 BT 17.30 93.77% (98.55%)

CG 19.77 93.55% (93.64%)
EP 1.04 88.87% (99.71%)
FT 40.10 87.32% (92.38%)
IS 72.1 78.28% (92.76%)
LU 8.26 51.81% (64.26%)
MG 15.64 60.49% (63.15%)
SP 19.77 86.05% (91.99%)

CESGA
Fekete 1.60 82.59% (92.81%)

CalcuNetw 3.12 73.78% (73.80%)
DBEM 275.67 5.94% (10.70%)
STEM-II 114.13 39.72% (83.42%)

ber of processes executing them. Rather, the more processes, the bigger the problem
that can be solved. As a result, an important amount of empty memory is allocated
in our tests, resulting in high compression rates.

4.3.2. State �le creation time

The Finis Terrae machine exhibits a high variability between times obtained
by di�erent executions of the same experiment. Allocating entire nodes reduces
the variability, but does not entirely solve the problem. Thus, performing a large
number of experiments and statistically analyzing the results is a better approach
than just giving the minimum, maximum, or mean times for each experiment. The
experimental approach consisted on measuring the creation time for the bigger state
�le for each application a minimum of 500 times, followed by the elimination of
outliers and the calculation of the 99% con�dence interval for the expected creation
times. The approach used for outlier identi�cation was to discard observations
bigger than a certain threshold. This threshold is de�ned for each application as
the third quartile of the data series plus 1.5 times the interquartile range (IQR).
This is a classical approach to outlier identi�cation [68]. Table 4.18 shows the 99%
con�dence interval for the mean creation times of a standard HDF-5 state �le, the
same HDF-5 �le including a CRC-32 error detection scheme, and for compressed
HDF-5 �les for all applications. Also, the minimum obtained times are shown for
comparison purposes. Note that these times correspond to the raw dumping time

4.3 Library 125

 1 4 9 16 25 36 49 64
0

100

200

300

400

500

600

700

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.13: File sizes for NAS BT

 1 2 4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.14: File sizes for NAS CG

126 Chapter 4. Experimental Results

 1 2 4 8 16 32 64
0

2

4

6

8

10

12

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.15: File sizes for NAS EP

 1 2 4 8 16 32 64
0

500

1000

1500

2000

2500

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.16: File sizes for NAS FT

4.3 Library 127

 1 2 4 8 16 32 64
0

500

1000

1500

2000

2500

3000

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.17: File sizes for NAS IS

 1 2 4 8 16 32 64
0

50

100

150

200

250

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.18: File sizes for NAS LU

128 Chapter 4. Experimental Results

 1 2 4 8 16 32 64
0

50

100

150

200

250

300

350

400

450

500

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.19: File sizes for NAS MG

 1 4 9 16 25 36 49 64
0

50

100

150

200

250

300

350

400

450

500

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.20: File sizes for NAS SP

4.3 Library 129

 1 2 4 8 16 32 64
0

2

4

6

8

10

12

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.21: File sizes for CESGA Fekete

 1 2 4 8 16 32 64
0

50

100

150

200

250

300

350

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.22: File sizes for DBEM

130 Chapter 4. Experimental Results

 1 2 4 8 16 32 64
0

20

40

60

80

100

120

140

160

180

200

Optimal Automatic Compressed Full data

processes

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.23: File sizes for STEM-II

BT CG EP FT IS LU MG SP Fekete CalcuNetw DBEM STEM
0

50

100

150

200

250

300

350

Optimal Automatic Compressed Full data

st
a

te
 fi

le
 s

iz
e

 (
M

B
)

Figure 4.24: Summary of �le sizes

4.3 Library 131

of a single checkpoint, not the real contribution of dumping times to the checkpoint
overhead, which is reduced by using multithreaded dumping.

Written data are tagged by the HDF-5 library to allow for conversions, if needed,
when restarting the application. This improves checkpoint mode performance, mov-
ing the conversion overhead to the restart mode, which should be a much less fre-
quent operation. A regression analysis on the dumping times with respect to the
checkpoint �le sizes yields a linear relationship between both factors in both the
standard and the CRC-32 �le creations. Using compression, however, the relation-
ship is not linear, since the dumping time depends on the number of variables to
be compressed and the entropy of the contained data. As can be seen, compressing
data heavily increases overall dumping times. Therefore, it should be enabled only
when the physical size of state �les is critical: for instance, if there are problems
with disk quotas or when the �les are going to be transferred using a slow net-
work. Also, it should be noted that the interval obtained for the mean creation
times of compressed �les for the NAS MG application is particularly large (about
0.25 seconds). This is due to the fact that the entropy of the stored data does not
remain constant through the execution, causing compression times to increase as
the execution progresses, and a high variance of the obtained times.

Figure 4.25 graphically compares the results shown in the table above, using the
maximum estimated value (i.e. the upper end of the con�dence intervals) for each
application.

4.3.3. Checkpoint overhead

To reduce the overhead introduced by �le generation, multihreaded state dump-
ing has been implemented. When performing the overhead tests, the problem of
the experimental variability in Finis Terrae has to be carefully dealt with. The load
of the allocated nodes dramatically impacts execution times. To handle this situa-
tion, full nodes were reserved for the execution of the experimental applications as
explained before. Moreover, it is important that the applications are executed on
the same nodes and in the same conditions. Thus, once the nodes were allocated, a
sequence of N experiments was run on them randomly selecting the type of each of
them before being executed. Thus, for instance, if 500 experiments were scheduled,
before starting each of them a random number was generated, and depending on it
being odd or even the original version of the application or the CPPC-instrumented
one was run. For the shorter applications, the number N of experiments was limited

132 Chapter 4. Experimental Results

T
able

4.18:
C
heckp

oint
�le

creation
tim

es
(seconds)

S
T
A
N
D
A
R
D

C
R
C
-3
2

C
O
M
P
R
E
S
S
E
D

A
p
p
lica

tio
n

x̄
m

in
x̄

m
a
x

m
in

x̄
m

in
x̄

m
a
x

m
in

x̄
m

in
x̄

m
a
x

m
in

NAS NPB-MPI v3.1

B
T

0.1374
0.1436

0.1162
0.2221

0.2286
0.2016

1.3248
1.3299

1.3095
C
G

0.0904
0.0991

0.0896
0.1914

0.1988
0.1728

1.7216
1.7256

1.7093
E
P

0.0065
0.0066

0.0061
0.0112

0.0113
0.0108

0.1195
0.1198

0.01187
F
T

0.1612
0.1717

0.1259
0.3601

0.3685
0.3217

3.4236
3.4339

3.3957
IS

0.2875
0.2996

0.2457
0.6500

0.6599
0.6008

6.2744
6.3449

6.1869
L
U

0.0776
0.0810

0.0661
0.1145

0.1172
0.1040

0.6191
0.6279

0.6006
M
G

0.1035
0.1077

0.0890
0.1796

0.1840
0.1666

0.6795
0.9111

0.5113
SP

0.1633
0.1692

0.1471
0.2657

0.2706
0.2509

1.2629
1.2699

1.2387

C
E
SG

A
Fekete

0.0251
0.0275

0.0187
0.0309

0.0322
0.0267

0.0818
0.0824

0.0802
C
alcuN

etw
0.0207

0.0214
0.0189

0.0353
0.0363

0.0313
0.0964

0.0968
0.0951

D
B
E
M

2.2384
2.2725

2.1339
3.6321

3.6769
3.4345

7.0284
7.0646

6.8588
ST

E
M
-II

0.9898
1.0147

0.8724
1.5406

1.5617
1.4581

4.3067
4.3527

4.0857

4.3 Library 133

BT CG EP FT IS LU MG SP Fekete CalcuNetw DBEM STEM-II
0

1

2

3

4

5

6

7

8

Standard CRC-32 Compressed

tim
e

 (
s)

Figure 4.25: Maximum mean dumping times for test applications

to 500, a number which should provide statistically representative results without
the need for more repetitions. For the larger ones this number was determined by
the maximum allocation time of the nodes, which was 10 hours for the number of
allocated cores. Performing more than one allocation is not a valid approach, since
usually the obtained time series may not be assumed to come from the same statis-
tical distribution. This experimental setup is designed to ensure that the variability
exhibited by the machine a�ects all types of experiments to the same degree. Out-
liers are identi�ed, as in the previous experiment, by removing observations bigger
than the third quartile plus 1.5 times IQR in each of the series. Table 4.19 shows
the number of regular and CPPC runs performed for each application, a 99% con-
�dence interval for the checkpointing overhead, the minimum execution time for
both the regular and CPPC versions of the code, and the maximum overhead per-
centage calculated as the upper limit of the overhead con�dence interval divided by
the minimum original runtime. As can be seen, sometimes the minimum execution

134 Chapter 4. Experimental Results

time for the CPPC version is below the minimum time for the original version of
the application. This evidences the need for statistical analyses of execution times.
Note that, even when considering the maximum possible overhead at 99% con�dence
and comparing it to the minimum time obtained for the execution of the original
code, the overhead percentages remain low, usually in the 1% range, except for the
IS application, which runs for about 25 seconds and therefore the 9.37% overhead
obtained does not account for more than 2.5 seconds. These overheads include,
besides �le generation, all CPPC instrumentation (e.g. variable and parameter reg-
istration). Files were generated using the HDF-5 writer, with CRC-32 and without
compression. One state �le per checkpoint was generated for all the applications in
the table.

The previously detailed experimental setup is not viable for the long-running
applications, DBEM and STEM-II, since they run for more than 6 and 23 hours
respectively. In order to obtain statistically signi�cant measurements for these ap-
plications in the same way as for the shorter ones would require years of computation
time. Instead, these applications were run in the Muxia cluster, owned by the Com-
puter Architecture Group of the University of A Coruña, formed by Intel Xeon 1.8
Ghz nodes with 1 GB of RAM, connected through an SCI network. This cluster
does not exhibit the high loads nor the high variability experienced in the Finis
Terrae, and therefore makes it possible to reach plausible conclusions without the
need for a large number of experiments. Thus, 10 executions of each version of the
codes were run. Table 4.20 details the minimum execution times for the original
versions of both DBEM and STEM-II executed on 4 cores, the checkpoint overhead
incurred in seconds, and the overhead percentage. The checkpointing frequency for
these applications was adjusted to approximately one checkpoint per hour, meaning
that 23 checkpoints were created during the DBEM executions, and 7 checkpoints
during the STEM-II ones.

4.3.4. Restart times

If a failure occurs, the restart time overhead must be taken into account in the
global execution time. Restart times have been measured and split into its three fun-
damental phases explained in Chapter 2: negotiation, �le read and e�ective data re-
covery. The negotiation process is measured from the CPPC_Init_configuration()
call and until a global agreement about the restart position has been reached, and
each process has identi�ed the state �le it must use for restarting. File read time

4.3 Library 135

T
ab
le
4.
19
:
R
un
ti
m
e
ov
er
he
ad

ca
us
ed

by
ch
ec
kp
oi
nt
in
g

A
p
p
.

R
u
n
s

x̄
m

in
x̄

m
a
x

M
in
.
ti
m
e

M
in
.
C
P
P
C
ti
m
e

M
ax
.
ov
er
he
ad

NASNPB-MPIv3.1

B
T

15
7
�
13
8

-2
.8
23
3

3.
60
10

56
2.
87

s.
56
3.
43

s.
0.
63
98
%

C
G

73
�
74

-1
.1
99
5

1.
23
85

21
1.
07

s.
21
0.
25

s.
0.
58
68
%

E
P

21
3
�
23
8

0.
53
00

0.
80
49

58
.7
1
s.

58
.3
2
s.

1.
37
10
%

F
T

13
2
�
14
8

2.
07
34

3.
69
43

25
6.
81

s.
25
9.
14

s.
1.
43
85
%

IS
23
2
�
22
7

1.
92
52

2.
41
36

25
.7
6
s.

27
.6
6
s.

9.
36
96
%

L
U

10
6
�
89

-2
.7
46
6

5.
07
50

85
7.
30

s.
86
1.
99

s.
0.
59
20
%

M
G

24
9
�
21
8

-1
.3
84
1

0.
91
45

66
.0
7
s.

66
.8
7
s.

1.
38
41
%

SP
47

�
63

1.
84
26

3.
18
17

77
4.
12

s.
77
5.
48

s.
0.
41
10
%

C
E
SG

A
Fe
ke
te

24
7
�
22
7

-0
.1
34
0

0.
18
74

51
.6
3
s.

52
.0
2
s.

0.
36
30
%

C
al
cu
N
et
w

92
�
87

-3
.5
30
1

3.
99
88

35
1.
71

s.
35
0.
23

s.
1.
13
70
%

136 Chapter 4. Experimental Results

Table 4.20: Runtime overhead on large-scale applications
Application Min. time Overhead Overhead percentage

DBEM 80473.13 s. 256.02 s. 0.31%
STEM-II 21622.41 s. 101.14 s. 0.47%

measurements begin when the negotiation ends, and comprise all steps taken until
the checkpoint data are loaded into memory and made available for the applica-
tion to recover them. These include the identi�cation of the writing plugin to be
used, �le opening and data reading. The recovery begins when the �le read ends,
and stops when CPPC determines that the restart process has �nished, switching
to checkpoint operation mode. This happens when the execution �ow reaches the
checkpoint statement where the �le was generated in the original execution.

As with the measurements of checkpoint �le creation times, 500 experiments
were performed, outliers were discarded from each series, and a 99% con�dence
interval was calculated for each of the phases. The results are shown in Table 4.21.
Figure 4.26(a) graphically compares the upper limit of the time intervals for each
of the phases. As can be seen, the negotiation is the most costly phase. This is due
to the fact that negotiation times have been measured for checkpoint �les including
CRC-32 codes. During the negotiation, application processes have to check the
integrity of the �les proposed for restart. If this experiment is performed with
standard �les without CRC-32 codes, negotiation times are reduced to the range
of milliseconds for all applications. If performed on compressed �les with CRC-32
codes, the time is reduced due to the �les being smaller, thus requiring less time for
the integrity checks to be performed.

The times obtained for the �le read phase depend basically on the size of the
�les themselves, being linearly related. Read times would be increased when using
compressed �les because of the need for data decompression. They may also be
increased when using state �les generated on di�erent architectures, due to the
necessary format conversions. This e�ect is shown in Figure 4.26(b), which compares
�le read times in the Finis Terrae for both Finis Terrae- and Muxia cluster-generated
state �les. This test also serves to demonstrate portability, since restarts take place
correctly using externally-generated �les. Although the test was performed using
the same statistical approach as above, only the upper limits of the intervals are
shown for simplicity. The relationship between both times depends exclusively on
the amount of data that needs to be converted, but the general trend is that the
read time is nearly doubled when compared to the original one. The recovery times

4.4 Summary 137

Table 4.21: Restart times (seconds)
NEGOTIATION FILE READ RECOVERY

Application x̄min x̄max x̄min x̄max x̄min x̄max

N
A
S
N
P
B
-M

P
I
v3
.1 BT 0.2668 0.3027 0.0913 0.0947 0.0507 0.0534

CG 0.2845 0.3177 0.0608 0.0629 0.0551 0.0568
EP 0.1714 0.2145 0.0152 0.0162 0.0132 0.0148
FT 0.6850 0.7667 0.0911 0.0947 0.1010 0.1033
IS 0.5248 0.5330 0.1476 0.1533 0.1783 0.1813
LU 0.3675 0.4193 0.0535 0.0553 0.0252 0.0271
MG 0.3057 0.3382 0.0500 0.0524 0.0440 0.0461
SP 0.2454 0.2580 0.0937 0.0992 0.0903 0.1006

CESGA
Fekete 0.1775 0.2233 0.0198 0.0210 0.0100 0.0115

CalcuNetw 0.0178 0.0180 0.0111 0.0113 0.0030 0.0030
DBEM 3.3010 3.5141 0.6193 0.6498 0.7348 0.7624
STEM-II 1.1269 1.1715 0.4711 0.4885 0.5468 0.5792

depend on the amount of data being recovered and the amount of code that must
be re-executed in order to achieve a complete state recovery.

All these tests show restart times to be very low and fairly negligible in most
situations. Restart times never exceed a second, except when working with large
state �les as is the case with the DBEM and STEM-II applications. Even in these
cases, most of the restart overhead is introduced by the consistency checks on state
�les, while the restart protocol itself remains very light and negligible when compared
to the total runtime of these applications.

4.4. Summary

This chapter gives a global overview of the performance obtained by the CPPC
framework. A large number of very di�erent applications have been used for exper-
imental testing, showing adequate automatic processing of them by the framework
in all cases. Results obtained by the compiler have been thoroughly described, and
shown to be adequate in both accuracy of the results and compilation performance,
particularly taking into account that the current implementation of the CPPC com-
piler has not been thoroughly optimized, neither implemented in a particularly ef-
�cient environment. After surveying the compilation results, the runtime behavior
of the CPPC library has been addressed. File sizes have been analyzed as one of

138 Chapter 4. Experimental Results

BT CG EP FT IS LU MG SP Fekete CalcuNetw DBEM STEM-II
0

1

2

3

4

5

6

Negotiation Read Recovery

tim
e

 (
se

co
n

d
s)

(a) Upper limit of the con�dence interval of restart times

BT CG EP FT IS LU MG SP Fekete CalcuNetw DBEM STEM-II
0,0

0,2

0,4

0,6

0,8

1,0

1,2

Standard Cross-restart

tim
e

 (
se

co
n

d
s)

(b) E�ect of data conversions in �le read times

Figure 4.26: Restart times for test applications

4.4 Summary 139

the fundamental factors in the global performance of the solution, and the bene�ts
obtained by the use of the variable level approach have been addressed. The other
key factor on checkpointing performance is the writing strategy used. To measure
this impact, state �le creation times were measured for all the writing strategies
included in the CPPC package. In order to reduce the overhead introduced by the
�le creation step, CPPC may optionally use a multithreaded dumping algorithm.
The global overhead introduced in the test applications when using this approach
was also measured statistically to ensure the accuracy of the results. These have
shown excellent checkpointing overheads, even when the presented numbers were the
worst-case ones, and a much better behavior is to be expected in most executions.
The overhead of the restart process has also been analyzed and shown to be negligi-
ble in reasonable execution scenarios (i.e. with standard failure rates). Cross-restart
experiments have been executed, demonstrating low overheads for data conversions
and the portability of the tool. All runtime tests, with the exception of the runs
of large-scale applications, were performed on the Finis Terrae machine hosted by
the Galician Supercomputing Center (CESGA). This supercomputer was ranked as
#209 in the June 2008 Top 500 list [1]. It represents a typical machine in a su-
percomputing center, and performing the experimental evaluation in it provides a
more accurate estimation of what can be expected of the CPPC framework in terms
of performance. Also, it demonstrates that the framework may be used in a com-
puting infrastructure on which the user has no superuser access or administration
privileges.

Conclusions and future work

CPPC is a portable and transparent checkpointing infrastructure for long-running
message-passing applications. It consists of a runtime library containing routines for
checkpointing support, together with a compiler that automates the use of the li-
brary. The most remarkable contributions of this framework are:

The compile-time coordination protocol: consistency issues are moved from
runtime to both compile and restart time. At compile time, checkpoints are
placed in safe points. At restart time, a negotiation between the processes
involved in the execution of the application decides the safe point from which
to restart. Process synchronization required by traditional coordinated check-
pointing approaches is transferred to restart time, thus improving scalabil-
ity. Moreover, this solution also enhances e�ency, since both compiling and
restarting an application are less frequent operations than checkpoint genera-
tion.

The reduced state �le sizes: CPPC works at variable level. It stores only
those variables that are needed upon application restart. By restricting the
amount of saved data, checkpoint �les are made smaller and so checkpointing
overhead decreases. This also improves the performance of network transfers,
if necessary.

The portable recovery of the application's state: state recovery is achieved in
a portable way by means of both the hierarchical data format used for state
dumping, and the selective re-execution of sections of non-portable code. This
re-execution also provides scope for the checkpointing of applications linked
to external libraries. Portability is a very interesting trait due to the inher-
ent heterogeneity of current trends in high performance computing, such as
Grid computing. CPPC-G [55] is an ongoing project developing an architec-

141

142 Conclusions and future work

ture based on web services to manage the execution of CPPC fault tolerant
applications on the Grid.

The modular design of the library: the CPPC library is implemented in C++,
using a highly modular design that allows for the �exible con�guration of all its
functionalities. It allows for dynamic con�guration of �le dumping formats, as
well as selection of several capabilities such as �le compression, critical when
working with slow networks or limited amounts of disk space, or integrity
checks. This highly modular design also allows for the use of the framework
in environments where users do not have administrative rights, which is often
the case in high performance computers. The use of the MVC pattern allows
the use of the library from virtually any host programming language, through
the implementation of thin software layers that adapt the application requests
to the internal interface of the CPPC core.

The fully transparent checkpointing: the CPPC compiler transforms the CPPC
library into a totally transparent checkpointing tool, through the automation
of all required code analyses and transformations. It includes a novel tech-
nique for automatic identi�cation of safe points and computation-intensive
loops based on the analysis of code complexity metrics, typical of software
engineering approaches.

CPPC has been experimentally tested, demonstrating usability, scalability, ef-
�ciency and portability. It correctly performed application instrumentation and
rollback-recovery for all the test cases, even using the same set of checkpoint �les to
perform restart on binary incompatible machines, with di�erent C/Fortran compilers
and MPI implementations. The experiments were performed on a publicly available
computing infrastructure (the Finis Terrae supercomputer hosted by the CESGA),
adopting statistical approaches to accurately provide performance estimations.

To our knowledge, CPPC is the only publicly available portable checkpointer
for message-passing applications. CPPC is an open-source project, available at
http://cppc.des.udc.es under GPL license.

This work has spawned the following publications:

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. Contro-
lador/preCompilador de Checkpoints Portables. In Actas de las XV Jornadas

de Paralelismo, pp. 253�258, Almería (Spain), September 2004.

Conclusions and future work 143

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. On de-
signing portable checkpointing tools for large-scale parallel applications. In
Proceedings of the 2nd International Conference on Computational Science

and Engineering (ICCSE'05), pp. 191�203. Istanbul (Turkey), June 2005.

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. Portable
Checkpointing of MPI applications. In Proceedings of the 12th Workshop on

Compilers for Parallel Computers (CPC'06), pp. 396�410, A Coruña (Spain),
January 2006.

G. Rodríguez, M.J. Martín, P. González y J. Touriño. Controller/Precompiler
for Portable Checkpointing. IEICE Transactions on Information and Systems,
E89-D(2):408�417, February 2006.

G. Rodríguez, M.J. Martín, P. González, J. Touriño y R. Doallo. CPPC: Una
herramienta portable para el checkpointing de aplicaciones paralelas. Boletín

de la red nacional de I+D, RedIRIS, (80):57�71, April 2007.

D. Díaz, X.C. Pardo, M.J. Martín, P. González y G. Rodríguez. CPPC-
G: Fault-Tolerant Parallel Applications on the Grid. In Proceedings of the

1st Iberian Grid Infrastructure Conference (IBERGRID'07), pp. 230�241,
Santiago de Compostela (Spain), May 2007.

G. Rodríguez, P. González, M.J. Martín y J. Touriño. Enhancing Fault-
Tolerance of Large-Scale MPI Scienti�c Applications. In Proceedings of the

9th International Conference on Parallel Computing Technologies (PaCT'07),
Pereslavl-Zalessky (Russia). Lecture Notes in Computer Science, 4671:153�
161, September 2007.

D. Díaz, X.C. Pardo, M.J. Martín, P. González y G. Rodríguez. CPPC-G:
Fault Tolerant Parallel Applications on the Grid. In 3rd Workshop on Large
Scale Computations on Grids (LaSCoG'07), Gda«sk (Poland). Lecture Notes

in Computer Science, 4967:852�859, May 2008.

G. Rodríguez, X.C. Pardo, M.J. Martín, P. González, D. Díaz. A Fault
Tolerance Solution for Sequential and MPI Applications on the Grid. Scalable
Computing: Practice and Experience, 9(2):101�109, June 2008.

G. Rodríguez, M.J. Martín, P. González, J. Touriño, R. Doallo. CPPC: A
Compiler-Assisted Tool for Portable Checkpointing of Message-Passing Appli-
cations. In Proceedings of the 1st International Workshop on Scalable Tools for

144 Conclusions and future work

High-End Computing (STHEC'08), held in conjunction with the 22nd ACM In-

ternational Conference on Supercomputing (ICS'08), pp. 1�12, Kos (Greece),
June 2008.

Future work

There are two main improvements that can be made to the CPPC framework. In
the �rst place, the spatial coordination approach used has an important drawback:
the need to specify checkpointing frequency in terms of the number of calls to the
checkpointing function, instead of on a temporal basis. We are currently working
on a lightweight, uncoordinated messaging protocol to allow processes to dynami-
cally vary the checkpointing frequency based on a user-speci�ed temporal frequency.
This protocol involves performing all-to-all non-blocking communications regarding
the speed at which each of the processes progresses through the application code,
and adopting the necessary spatial frequency to ensure that the slowest process
checkpoints at the user-speci�ed rate.

The second improvement to be performed is related to the complexity analysis
for checkpoint insertion. The current algorithm implemented in the CPPC compiler
can be improved by using more complex metrics, in order to obtain a better approach
to the optimal results.

Bibliography

[1] Top 500 supercomputer sites. http://www.top500.org. Last accessed September
2008.

[2] Fault tolerance under UNIX. ACM Transactions on Computing, 7(1):1�24,
1989.

[3] N. Aeronautics and S. Administration. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB. Last accessed September 2008.

[4] S. Agarwal, R. Garg, M. Gupta, and J. Moreira. Adaptive incremental check-
pointing for massively parallel systems. In Proceedings of the 18th Annual

International Conference on Supercomputing (ICS'04), pages 277�286, 2004.

[5] A. Agbaria and R. Friedman. Star�sh: Fault-tolerant dynamic MPI programs
on clusters of workstations. Cluster Computing, 6(3):227�236, 2003.

[6] A. Alexandrescu. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley, 1st edition, 2001.

[7] L. Alvisi. Understanding the message logging paradigm for masking process

crashes. PhD thesis, Cornell University, Department of Computer Science,
1996.

[8] A. Baratloo, P. Dasgupta, and Z. Kedem. CALYPSO: A novel software system
for fault-tolerant parallel processing on distributed platforms. In Proceedings

of the 4th IEEE International Symposium on High Performance Distributed

Computing (HPDC-4), pages 122�129, 1995.

[9] R. Batchu, J. Neelamegam, C. Zhenqian, M. Beddhu, A. Skjellum, Y. Dandass,
and M. Apte. MPI/FTTM: Architecture and taxonomies for fault-tolerant,
message-passing middleware for performance-portable parallel computing. In

145

146 BIBLIOGRAPHY

Proceedings of the 1st IEEE International Symposium of Cluster Computing

and the Grid (CCGrid'01), pages 26�33, 2001.

[10] A. Beguelin, E. Seligman, and P. Stephan. Application level fault tolerance
in heterogeneous networks of workstations. Journal of Parallel and Distributed

Computing, 43(2):147�155, 1997.

[11] B. Bhargava and S. Lian. Independent checkpointing and concurrent rollback
for recovery � An optimistic approach. In Proceedings of the 7th Symposium on

Reliable Distributed Systems (SRDS'88), pages 3�12, 1988.

[12] A. Bouteiller, F. Capello, T. Hérault, G. Krawezik, P. Lemarinier, and F. Mag-
niette. MPICH-V2: A fault-tolerant MPI for volatile nodes based on pessimistic
sender based message logging. In Proceedings of the 15th ACM/IEEE Confer-

ence on Supercomputing (SC'03), pages 25�42, 2003.

[13] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of MPI programs. In Proceedings of the

2003 ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP'03), pages 84�94, 2003.

[14] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. C3: A system for
automating application-level checkpointing of MPI programs. In Proceedings

of the 16th International Workshop on Languages and Compilers for Parallel

Computing (LCPC'03), pages 357�373, 2003.

[15] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Collective operations
in application-level fault-tolerant MPI. In Proceedings of the 17th International

Conference on Supercomputing (ICS'03), pages 234�243, 2003.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley
& Sons, 1st edition, 1996.

[17] A. Carmona, A. Encinas, and J. Gesto. Estimation of Fekete points. Journal
of Computational Physics, 225(2):2354�2376, 2007.

[18] K. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63�75,
1985.

BIBLIOGRAPHY 147

[19] Y. Chen, J. Plank, and K. Li. CLIP: A checkpointing tool for message-passing

parallel programs, pages 182�200. The MIT Press, 2004.

[20] S.-E. Choi and S. Deitz. Compiler support for automatic checkpointing. In Pro-
ceedings of the 16th International Symposium on High Performance Computing

Systems and Applications (HPCS'02), pages 213�220, 2002.

[21] F. Cristian and F. Jahanian. A timestamp based checkpointing protocol for
long-lived distributed computations. In Proceedings of the 10th Symposium on

Reliable Distributed Systems (SRDS'91), pages 12�20, 1991.

[22] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys,
34(3):375�408, 2002.

[23] E. Elnozahy and J. Plank. Checkpointing for Peta-Scale systems: A look into
the future of practical rollback-recovery. IEEE Transactions on Dependable and

Secure Computing, 1(2):97�108, 2004.

[24] G. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic
applications in a dynamic world. Lecture Notes in Computer Science, 1908:346�
353, 2000.

[25] S. Feldman and C. Brown. Igor: A system for program debugging via reversible
execution. ACM SIGPLAN Notices, 24(1):112�123, 1989.

[26] R. Fernandes, K. Pingali, and P. Stodghill. Mobile MPI programs in compu-
tational Grids. In Proceedings of the 11th ACM Symposium on Principles and

Practice of Parallel Computing (PPoPP'06), pages 22�31, 2006.

[27] N. C. for Supercomputing Applications. HDF-5: File Format Speci�cation.
http://hdf.ncsa.uiuc.edu/HDF5/doc/. Last accessed September 2008.

[28] E. Gamma, R. Helm, R. Jonhson, and J. Vlissides. Design Patterns. Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1st edition, 1994.

[29] R. Gioiosa, J. Sancho, S. Jiang, and F. Petrini. Transparent, Incremental
Checkpointing at Kernel Level: a Foundation for Fault Tolerance for Paral-
lel Computers. In Proceedings of the 2005 ACM/IEEE Conference on High

Performance Networking and Computing (SC'05), pages 9�23, 2005.

148 BIBLIOGRAPHY

[30] P. González, T. Pena, and J. Cabaleiro. Dual BEM for crack growth analy-
sis on distributed-memory multiprocessors. Advances in Engineering Software,
31(12):921�927, 2000.

[31] W. Gropp and E. Lusk. Fault Tolerance in Message Passing Interface Programs.
International Journal of High Performance Computing Applications, 18(3):363�
372, 2004.

[32] M. Hayden. The Ensemble system. Technical Report TR98-1662, Cornell Uni-
versity, Department of Computer Sciences, 1998.

[33] J. Hélary, A. Mostefaoui, and M. Raynal. Virtual precedence in asynchronous
systems: concepts and applications. In Proceedings of the 11th Workshop on

Distributed Algorithms (WDAG'97), pages 170�184, 1997.

[34] D. Johnson and W. Zwaenepoel. Sender-based message logging. In Proceed-

ings of the 17th Annual International Symposium on Fault-Tolerant Computing

(FTCS'87), pages 14�19, 1987.

[35] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed
systems. IEEE Transactions on Software Engineering, 13(1):23�31, 1987.

[36] C. Landau. The checkpoint mechanism in KeyKOS. In Proceedings of the

2nd International Workshop on Object Orientation on Operating Systems (I-

WOOOS'92), pages 86�91, 1992.

[37] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus � an extensible compiler
infrastructure for source-to-source transformation. In Proceedings of the 16th

International Workshop on Languages and Compilers for Parallel Computing

(LCPC'03), pages 539�553, 2003.

[38] C.-C. Li, E. Stewart, and W. Fuchs. Compiler-assisted full checkpointing. Soft-
ware: Practice and Experience, 24(10):871�886, 1994.

[39] C.-C. Li, E. Stewart, and W. Fuchs. Compiler-assisted full checkpointing. Soft-
ware: Practice and Experience, 24(10):871�886, 1994.

[40] M. Litzkow, M. Livny, and M. Mutka. Condor � A hunter of idle workstations.
In Proceedings of the 8th International Conference on Distributed Computing

Systems (ICDCS'88), pages 104�111, 1988.

BIBLIOGRAPHY 149

[41] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migra-
tion of UNIX processes in the Condor distributed processing system. Technical
Report #1346, University of Wisconsin-Madison, 1997.

[42] M. Martín, D. Singh, J. Mouriño, F. Rivera, R. Doallo, and J. Bruguera. High
performance air pollution modeling for a power plant environment. Parallel

computing, 29(11�12):1763�1790, 2003.

[43] J. Mouriño, E. Estrada, and A. Gómez. CalcuNetw: Calculate measurements
in complex networks. Technical Report 2005-003, Galician Supercomputing
Center (CESGA), 2005.

[44] R. Netzer and J. Xu. Necessary and su�cient conditions for consistent global
snapshots. IEEE Transactions on Parallel and Distributed Systems, 6(2):165�
169, 1995.

[45] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite
network operating system. IEEE Computer, 21(2):23�36, 1988.

[46] T. Parr. Antlr parser generator. http://www.antlr.org. Last accessed September
2008.

[47] J. Plank. E�cient checkpointing on MIMD architectures. PhD thesis, Princeton
University, Department of Computer Science, 1993.

[48] J. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for
fast checkpointing. IEEE Technical Committee on Operating Systems and Ap-

plication Environments, 7(4):10�14, 1995.

[49] J. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing
under Unix. In Usenix Winter Technical Conference, pages 213�223, 1995.

[50] J. Plank, J. Xu, and R. Netzer. Compressed di�erences: An algorithm for fast
incremental checkpointing. Technical Report CS-95-302, University of Ten-
nessee, 1995.

[51] B. Ramkumar and V. Strumpen. Portable checkpointing for heterogeneous
architectures. In Proceedings of the 27th International Symposium on Fault-

Tolerant Computing (FTCS'97), pages 58�67, 1997.

[52] B. Randell. System structure for software fault tolerance. IEEE Transactions

on Software Engineering, 1(2):221�232, 1975.

150 BIBLIOGRAPHY

[53] S. Rao, L. Alvisi, and H. Vin. Egida: an extensible toolkit for low-overhead
fault-tolerance. In Proceedings of the 29th Annual International Symposium on

Fault-Tolerant Computing (FTCS'99), pages 48�55, 1999.

[54] G. Rodríguez, M. Martín, P. González, and J. Touriño. Controller/Precompiler
for Portable Checkpointing. IEICE Transactions on Information and Systems,
E89-D(2):408�417, 2006.

[55] G. Rodríguez, X. Pardo, M. Martín, P. González, and D. Díaz. A fault tolerance
solution for sequential and MPI applications on the Grid. Scalable Computing:
Practice and Experience, 9(2):101�109, 2008.

[56] M. Russinovich and Z. Segall. Fault-tolerance for o�-the-shelf applications
and hardware. In Proceedings of the 25th International Symposium on Fault-

Tolerant Computing (FTCS'95), pages 67�71, 1995.

[57] M. Sezgin and B. Sankur. Survey over image thresholding techniques and
quantitative performance evaluation. Journal of Electronic Imaging, 13(1):146�
165, 2004.

[58] D. Shires, L. Pollock, and S. Sprenkle. Program �ow graph construction for
static analysis of MPI programs. In Proceedings of the International Con-

ference on Parallel and Distributed Processing Techniques and Applications

(PDPTA'99), pages 1847�1853, 1999.

[59] S. Siegel and G. Avrunin. Modeling wilcard-free MPI programs for veri�ca-
tion. In Proceedings of the 10th ACM Symposium on Principles and Practice

of Parallel Computing (PPoPP'05), pages 95�106, 2005.

[60] S. Smale. Mathematical problems for the next century. Mathematical Intelli-

gencer, 20(2):7�15, 1998.

[61] G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Pro-

ceedings of the 10th International Parallel Processing Symposium (IPPS'96),
pages 526�531, 1996.

[62] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM

Transactions on Computer Systems, 3(3):204�226, 1985.

[63] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
2000.

BIBLIOGRAPHY 151

[64] V. Strumpen. Portable and fault-tolerant software systems. IEEE Micro,
18(5):22�32, 1998.

[65] V. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency, Practice and Experience, 2(4):315�340, 1990.

[66] Y. Tamir and C. Sequin. Error recovery in multicomputers using global check-
points. In Proceedings of the International Conference on Parallel Processing

(ICPP'84), pages 32�41, 1984.

[67] S. Toueg and Ö. Babao�glu. On the optimum checkpoint selection problem.
SIAM Journal on Computing, 13(3):630�649, 1984.

[68] J. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[69] N. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers, 46(8):942�947, 1997.

[70] Y.-M. Wang. Checkpoint space reclamation for uncoordinated checkpointing in

message-passing systems. PhD thesis, University of Illinois, Department of
Computer Science, 1993.

[71] N. Woo, H. Jung, H. Yeom, T. Park, and H. Park. MPICH-GF: Transparent
checkpointing and rollback-recovery for Grid-enabled MPI processes. IEICE

Transactions on Information and Systems, E87-D(7):1820�1828, 2004.

[72] Xerces C++ Parser. http://xml.apache.org/xerces-c/. Last accessed September
2008.

[73] G. Zack, W. Rogers, and S. Latt. Automatic measurement of sister chromatid
exchange frequency. Journal of Histochemistry & Cytochemistry, 25(7):741�753,
1977.

