Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonparametric forecasting in time series: a comparative study

Thumbnail
Ver/Abrir
nonpforecast.pdf (264.6Kb)
Use este enlace para citar
http://hdl.handle.net/2183/861
Colecciones
  • Investigación (FIC) [1728]
Metadatos
Mostrar el registro completo del ítem
Título
Nonparametric forecasting in time series: a comparative study
Autor(es)
Vilar, Juan M.
Cao, Ricardo
Fecha
2007
Cita bibliográfica
Communications in statistics: simulation and computation, vol 36, n. 2, pp. 311-334.
Resumen
The problem of predicting a future value of a time series is considered in this paper. If the series follows a stationary Markov process, this can be done by nonparametric estimation of the autoregression function. Two forecasting algorithms are introduced. They only differ in the nonparametric kernel-type estimator used: the Nadaraya-Watson estimator and the local linear estimator. There are three major issues in the implementation of these algorithms: selection of the autoregressor variables; smoothing parameter selection and computing prediction intervals. These have been tackled using recent techniques borrowed from the nonparametric regression estimation literature under dependence. The performance of these nonparametric algorithms has been studied by applying them to a collection of 43 well-known time series. Their results have been compared to those obtained using classical Box-Jenkins methods. Finally, the practical behaviour of the methods is also illustrated by a detailed analysis of two data sets.
Palabras clave
Box-Jenkins
Bootstrap
Dependent data
Kernel regression estimation
Local linear estimation
 
Versión del editor
http://www.informaworld.com/openurl?genre=article&issn=0361-0918&volume=36&issue=2&spage=311;
Derechos
This is an electronic version of an article published in Communications in statistics, simulation and computation, vol. 36, n.2. Communications in statistics, simulations and computation is available online at: http://www.informaworld.com/
ISSN
0361-0918

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias