Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly Prediction in Cybersecurity: A Machine Learning Model from the Perspective of Data Engineering and Fingerprinting

Thumbnail
View/Open
XoveTIC_2024_proceedings_Parte60.pdf (331.3Kb)
Use this link to cite
http://hdl.handle.net/2183/41130
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadata
Show full item record
Title
Anomaly Prediction in Cybersecurity: A Machine Learning Model from the Perspective of Data Engineering and Fingerprinting
Author(s)
Bravo Alonso, Verónica
Martínez-Martínez, Víctor
Date
2024
Abstract
Abstract: This project utilizes artificial intelligence (AI) and machine learning through the development of a mathematical-predictive model to reliably detect cyber anomalies. Using the BETH dataset and the CRISP-DM methodology, this research has addressed the problem of combining kernel and network traffic data, achieving a 37.27% increase in the detection of malicious activities compared to the initial data. Additionally, an innovative dataset was formulated, in which the complete trace of a new botnet attack pattern was discovered, previously unknown to BETH, involving the entire monitored network in illicit cryptocurrency mining. Finally, several models were successfully built and trained using Random Forest and Decision Trees algorithms, with accuracies of 100% and 99%, respectively.
Keywords
Artificial intelligence (AI)
Cybercriminals
Safeguards
Botnet attack pattern
Machine learning
 
Editor version
https://doi.org/10.17979/spudc.9788497498913.60
Rights
Atribución 4.0

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback