Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studying How a Motivational System Based on Intrinsic Motivations Favors Exploration in Unstructured Environments

Thumbnail
View/Open
XoveTIC_2024_proceedings_Parte33.pdf (669.7Kb)
Use this link to cite
http://hdl.handle.net/2183/41057
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadata
Show full item record
Title
Studying How a Motivational System Based on Intrinsic Motivations Favors Exploration in Unstructured Environments
Author(s)
Müller, Jakub
Romero, Alejandro
Duro, Richard J.
Date
2024
Abstract
This paper investigates the implementation of a motivational system based on intrinsic motivation in robots to enhance their adaptability in learning new processes within unstructured environments. Our goal is to explore how intrinsic motivation can lead to more adaptive and effective learning. The proposed methods focus on goal discovery and perceptual state space exploration, for which we use a novelty measure with some added noise to prevent learning stagnation. The results show that the proposed discovery methods achieve similar effectiveness in identifying novel features in the perceptual state as the algorithms tested from the literature but with lower computational times. This study contributes to the development of robotic systems with a higher degree of autonomy.
Keywords
System Random Network Distillation (RND)
Dynamic Auto-Encoder (Dynamic-AE)
Episodic Curiosity Module (ECO)
EX2 (Exploration by Extrapolation)
Robot
 
Editor version
https://doi.org/10.17979/spudc.9788497498913.33
Rights
Atribución 4.0

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback