Custom automatic segmentation models for medicine and biology based on FastSAM

Ver/ abrir
Use este enlace para citar
http://hdl.handle.net/2183/40937Coleccións
- Investigación (FFISIO) [449]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Custom automatic segmentation models for medicine and biology based on FastSAMAutor(es)
Data
2024-12-13Cita bibliográfica
Paramés-Estévez S, Pérez-Dones D, Rego-Pérez I, Oreiro-Villar N, Blanco FJ, Roca Pardiñas J, González Pazó G, Míguez DG, Muñuzuri AP. Custom automatic segmentation models for medicine and biology based on FastSAM. WESEAS Trans Biol Biomed. 2024;21:373-384.
Resumo
[Abstract] FastSAM, a public image segmentation model trained on everyday images, is used to achieve a customizable and state-of-the-art segmentation model minimizing the training in two completely different scenarios. In one example we consider macroscopic X-ray images of the knee area. In the second example, images were acquired by microscopy of the volumetric zebrafish embryo retina with a much smaller spatial scale. In both cases, we analyze the minimum set of images required to segmentate keeping the state-of-the-art standards. The effect of filters on the pictures and the specificities of considering a 3D volume for the retina
images are also analyzed.
Palabras chave
Automatic segmentation
FastSAM
X-ray images
Microscopy images
Low-Resource Friendly
Generalizable approach
FastSAM
X-ray images
Microscopy images
Low-Resource Friendly
Generalizable approach
Versión do editor
ISSN
2224-2902