Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Fisioterapia
  • Investigación (FFISIO)
  • View Item
  •   DSpace Home
  • Facultade de Fisioterapia
  • Investigación (FFISIO)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Custom automatic segmentation models for medicine and biology based on FastSAM

Thumbnail
View/Open
Parames_Custom_2024.pdf (2.650Mb)
Use this link to cite
http://hdl.handle.net/2183/40937
Collections
  • Investigación (FFISIO) [481]
Metadata
Show full item record
Title
Custom automatic segmentation models for medicine and biology based on FastSAM
Author(s)
Paramés-Estévez, Santiago
Pérez-Dones, Diego
Rego-Pérez, Ignacio
Oreiro, Natividad
Blanco García, Francisco J
Roca-Pardiñas, Javier
González Pazó, Germán
Míguez, David G.
Muñuzuri, Alberto P.
Date
2024-12-13
Citation
Paramés-Estévez S, Pérez-Dones D, Rego-Pérez I, Oreiro-Villar N, Blanco FJ, Roca Pardiñas J, González Pazó G, Míguez DG, Muñuzuri AP. Custom automatic segmentation models for medicine and biology based on FastSAM. WESEAS Trans Biol Biomed. 2024;21:373-384.
Abstract
[Abstract] FastSAM, a public image segmentation model trained on everyday images, is used to achieve a customizable and state-of-the-art segmentation model minimizing the training in two completely different scenarios. In one example we consider macroscopic X-ray images of the knee area. In the second example, images were acquired by microscopy of the volumetric zebrafish embryo retina with a much smaller spatial scale. In both cases, we analyze the minimum set of images required to segmentate keeping the state-of-the-art standards. The effect of filters on the pictures and the specificities of considering a 3D volume for the retina images are also analyzed.
Keywords
Automatic segmentation
FastSAM
X-ray images
Microscopy images
Low-Resource Friendly
Generalizable approach
 
Editor version
https://doi.org/10.37394/23208.2024.21.38
ISSN
2224-2902

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback