Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating regular path queries on compressed adjacency matrices

Thumbnail
Ver/Abrir
GomezBrandon_Adrian_2025_Evaluating_regular_path_queries_on_compressed_adjacency_matrices.pdf - Versión aceptada (442.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/40774
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Evaluating regular path queries on compressed adjacency matrices
Autor(es)
Arroyuelo, Diego
Gómez-Brandón, Adrián
Navarro, Gonzalo
Fecha
2025
Cita bibliográfica
Arroyuelo, D., Gómez-Brandón, A. & Navarro, G. Evaluating regular path queries on compressed adjacency matrices. The VLDB Journal 34, 2 (2025). https://doi.org/10.1007/s00778-024-00885-6
Resumen
[Abstract]: Regular Path Queries (RPQs), which are essentially regular expressions to be matched against the labels of paths in labeled graphs, are at the core of graph database query languages like SPARQL and GQL. A way to solve RPQs is to translate them into a sequence of operations on the adjacency matrices of each label. We design and implement a Boolean algebra on sparse matrix representations and, as an application, use them to handle RPQs. Our baseline representation uses the same space and time as the previously most compact index for RPQs, outperforming it on the hardest types of queries—those where both RPQ endpoints are unspecified. Our more succinct structure, based on -trees, is 4 times smaller than any existing representation that handles RPQs. While slower, it still solves complex RPQs in a few seconds and slightly outperforms the smallest previous structure on the hardest RPQs. Our new sparse-matrix-based solutions dominate a good portion of the space/time tradeoff map, being outperformed only by representations that use much more space. They also implement an algebra of Boolean matrices that is of independent interest beyond solving RPQs.
Palabras clave
Regular path queries on graph databases
Compact data structures for adjacency matrices
Sparse matrices
Sparse Boolean matrices
 
Descripción
O software está dispoñible en: https://github.com/adriangbrandon/rpq-matrix
 
Dataset relacionado: https://zenodo.org/records/7254968
 
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00778-024-00885-6
 
Versión del editor
https://doi.org/10.1007/s00778-024-00885-6
Derechos
Copyright © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
ISSN
1066-8888

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias