Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing App Reviews: A Comparative Evaluation of Machine Learning Algorithms on a Spanish Dataset

Thumbnail
View/Open
XoveTIC_2024_proceedings_Parte10.pdf (332.6Kb)
Use this link to cite
http://hdl.handle.net/2183/40765
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Congreso XoveTIC: impulsando el talento científico (7º. 2024. A Coruña) [66]
Metadata
Show full item record
Title
Analyzing App Reviews: A Comparative Evaluation of Machine Learning Algorithms on a Spanish Dataset
Author(s)
Limaylla-Lunarejo, María-Isabel
Condori Fernández, Nelly
Rodríguez Luaces, Miguel
Date
2024
Abstract
"Currently, the internet plays a main role in collecting and providing information on the needs and preferences of app users. App reviews contain valuable insights, such as bug reports, feature requests, and user feedback. However, manually analyzing these reviews is a time-consuming task. In this paper, we conducted an experiment to automate the process of analyzing app reviews using machine learning algorithms. We utilized and translated the dataset from Gu et al. (2015) to Spanish, which contains approximately 34,000 reviews from several apps. Three algorithms were trained: Multinomial Naive Bayes, Logistic Regression, and Support Vector Machine, with hyperparameter optimization performed via Grid Search. Logistic Regression achieved the highest performance with a maximum F1-score of 0.74."
Keywords
Multinomial naive Bayes
Support vector machine
Logistic regression
 
Editor version
https://doi.org/10.17979/spudc.9788497498913.10
Rights
Atribución 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback