High-performance Monte Carlo radiosity on GPU based on scene partitioning

Use este enlace para citar
http://hdl.handle.net/2183/40752
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Colecciones
- Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítemTítulo
High-performance Monte Carlo radiosity on GPU based on scene partitioningFecha
2012-03Cita bibliográfica
Sanjurjo, J. R., Amor, M., Bóo, M., & Doallo, R. (2012). High-performance Monte Carlo radiosity on GPU based on scene partitioning. Microprocessors and Microsystems, 36(2), 88-95. https://doi.org/10.1016/j.micpro.2011.05.004
Resumen
[Abstract]: The recent interest in GPGPU, (General-Purpose computation on Graphics Processing Unit), has stimulated improvements in the programmability of the GPU. Although the utilization of new languages like OpenCL and CUDA facilitate GPU programming, different challenges have to be overcome to optimize the results of a direct implementation. Specifically, a straightforward implementation of the Monte Carlo radiosity algorithm on the GPU does not produce the expected performance. In this paper we develop different strategies to increase the performance of the implementation: utilization of an additional simplified version of the mesh to reduce the computational requirements, data partitioning of the scene to increase the data locality, and an efficient thread scheduling to exploit the characteristics of the GPU. Our approach increases the flexibility of previous solutions and the results show a significant improvement of the execution time.
Palabras clave
Radiosity method
Monte Carlo algorithms
Graphics processing units
CUDA
Data partitioning
Monte Carlo algorithms
Graphics processing units
CUDA
Data partitioning
Descripción
This is the Accepted version of the published document.
This version of the article: Sanjurjo, J. R., Amor, M., Bóo, M., & Doallo, R. (2012). ‘High-performance Monte Carlo radiosity on GPU based on scene partitioning’ has been accepted for publication in: Microprocessors and Microsystems, 36(2), 88-95. The Version of Record is available online at https://doi.org/10.1016/j.micpro.2011.05.004.
Versión del editor
Derechos
Atribución-NoComercial-SinDerivadas 4.0 Internacional
ISSN
0141-9331
1872-9436
1872-9436