On the Application of Artificial Neural Networks for the Real Time Prediction of Parametric Roll Resonance
No accesible hasta 9999-99-99
Use este enlace para citar
http://hdl.handle.net/2183/40731Colecciones
- Investigación (EPEF) [580]
Metadatos
Mostrar el registro completo del ítemTítulo
On the Application of Artificial Neural Networks for the Real Time Prediction of Parametric Roll ResonanceFecha
2023-03-29Cita bibliográfica
Míguez González, M., Díaz Casás, V., López Peña, F., Pérez Rojas, L. (2023). On the Application of Artificial Neural Networks for the Real Time Prediction of Parametric Roll Resonance. In: Spyrou, K.J., Belenky, V.L., Katayama, T., Bačkalov, I., Francescutto, A. (eds) Contemporary Ideas on Ship Stability. Fluid Mechanics and Its Applications, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-16329-6_20
Resumen
[Abstract]: In this paper, the practical implementation methodology of an artificial neural network (ANN) based parametric roll prediction system, is studied. In order to avoid expensive scale tests, an uncoupled nonlinear roll model is applied to tune the system. The capability of this model to accurately simulate the phenomenon of parametric roll resonance is validated using towing tank tests. Finally, the behavior of the ANN system for forecasting roll motion in a realistic sailing condition has been investigated, obtaining very promising results.
Palabras clave
Parametric rolling
Neural networks
Time series forecasting
Ship stability
Neural networks
Time series forecasting
Ship stability
Descripción
Manuscrito aceptado
Versión del editor
ISBN
978-3-031-16329-6