Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recurrent Task Specialization Network for Segmentation-aided Vascular Landmarks Detection in Retinal Images

Thumbnail
Ver/Abrir
Hervella_AlvaroS_2024_Recurrent_Task_Specialization_Network_for_Segmentation_aided_Vascular_Landmarks_Detection.pdf (1.419Mb)
Use este enlace para citar
http://hdl.handle.net/2183/40730
Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Recurrent Task Specialization Network for Segmentation-aided Vascular Landmarks Detection in Retinal Images
Autor(es)
Hervella, Álvaro S.
Rouco, J.
Novo Buján, Jorge
Sánchez, Clara I.
Ortega Hortas, Marcos
Fecha
2024-10
Cita bibliográfica
Hervella, Á. S., Rouco, J., Novo, J., Sánchez, C. I., & Ortega, M. (2024). Recurrent Task Specialization Network for Segmentation-aided Vascular Landmarks Detection in Retinal Images. In Frontiers in Artificial Intelligence and Applications, vol 392: ECAI 2024 (pp. 688-695). IOS Press. DOI: 10.3233/FAIA240550
Resumen
[Abstract]: The detection of vessel crossings and bifurcations in eye fundus images plays an important role in numerous applications, including the diagnosis of ophthalmic and systemic diseases, biometric authentication, and retinal image registration. Nowadays, deep neural networks are successfully used for the detection of these vascular landmarks. However, existing approaches could be limited by the lack of understanding of the retinal anatomy and the intricate retinal vasculature. In this context, we propose Recurrent Task Specialization, a novel approach that performs a recurrent forward process with two forward passes through the same network, each of them specialized in a different task. We apply the proposed approach to the detection of vessel crossings and bifurcations in the retina via heatmap regression, using the segmentation of the retinal vasculature as the auxiliary task. To validate our proposal, we perform comparative experiments on two public datasets, including common alternatives to leverage auxiliary tasks, such as standard multi-task learning and transfer learning. The proposed approach outperforms existing alternatives and achieves the best results in the state-of-the-art for the detection of vessel crossings and bifurcations in retinal images. In this regard, our experiments demonstrate the potential of the proposed approach to improve the performance of deep neural networks in applications where adequate auxiliary tasks can be constructed.
Palabras clave
Vessel Segmentation
Vascular Bundle
Ophthalmology
Deep neural networks
Eye protection
Image enhancement
Image registration
Image segmentation
Multi-task learning
Recurrent neural networks
 
Descripción
Presented at the 27th European Conference on Artificial Intelligence, ECAI 2024, Santiago de Compostela 19-24 October 2024.
Versión del editor
http://dx.doi.org/10.3233/FAIA240550
Derechos
Atribución-NoComercial 4.0 Internacional
ISSN
0922-6389
ISBN
978-1-64368-548-9

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias