BetaGPU: Harnessing GPU power for parallelized beta distribution functions
Use este enlace para citar
http://hdl.handle.net/2183/40549
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
Coleccións
- Investigación (FIC) [1615]
Metadatos
Mostrar o rexistro completo do ítemTítulo
BetaGPU: Harnessing GPU power for parallelized beta distribution functionsData
2025-02Cita bibliográfica
Fernández-Fraga, A., González-Domínguez, J., Martín, María J. (2025). BetaGPU: Harnessing GPU power for parallelized beta distribution functions, SoftwareX, 29(102009), 2025. https://doi.org/10.1016/j.softx.2024.102009
Resumo
[Abstract]: The efficient computation of Beta distribution functions, particularly the Probability Density Function (PDF) and Cumulative Distribution Function (CDF), is critical in various scientific fields, including bioinformatics and data analysis. This work presents BetaGPU, a high-performance software package written in C++ and CUDA that leverages the parallel processing capabilities of Graphics Processing Units (GPUs) to significantly accelerate these computations, with an OpenMP version for multiCPU systems, and integrated seamlessly with popular statistical programming languages R and Python. This open-source package provides an accessible, accurate, and scalable solution for researchers and practitioners. By offloading intensive calculations to the GPU, this software is significantly faster than traditional single-core CPU-based methods, facilitating faster data analysis and enabling real-time applications. The software’s high performance and ease of use make it an invaluable tool for users in bioinformatics and other data-intensive domains.
Palabras chave
Beta distribution
High performance computing
GPU
CUDA
R
OpenMP
Python
High performance computing
GPU
CUDA
R
OpenMP
Python
Descrición
Permanent link to code/repository used for this code version: https://github.com/ElsevierSoftwareX/SOFTX-D-24-00555.
Link to developer documentation/manual: https://github.com/UDC-GAC/BetaGPU
Versión do editor
Dereitos
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
ISSN
2352-7110