Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning

Thumbnail
No accesible hasta 2025-12-10
Solicite una copia
Ver/Abrir
Vazquez_Lema_David_2024_Segmentation_clasification_and_interpretation_of_breast_cancer_medical_images.pdf (15.51Mb)
Use este enlace para citar
http://hdl.handle.net/2183/40548
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning
Autor(es)
Vázquez Lema, David
Mosqueira-Rey, Eduardo
Hernández-Pereira, Elena
Fernández-Lozano, Carlos
Seara-Romera, Fernando
Pombo-Otero, Jorge
Fecha
2024-12-10
Cita bibliográfica
Vázquez-Lema, D., Mosqueira-Rey, E., Hernández-Pereira, E. et al. Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning. Neural Comput & Applic (2024). https://doi.org/10.1007/s00521-024-10799-7
Resumen
[Abstract]: This paper explores the application of Human-in-the-Loop (HITL) strategies in the training of machine learning models in the medical domain. In this case, a doctor-in-the-loop approach is proposed to leverage human expertise in dealing with large and complex data. Specifically, the paper deals with the use of Whole Slide Imaging (WSI) for the analysis and prediction of the genomic subtype of breast cancer. Three different tasks were developed: segmentation of histopathological images, classification of these images regarding the genomic subtype of the cancer, and finally, interpretation of the machine learning results. The involvement of a pathologist helped us to develop a better segmentation model trying to group areas to make it more useful for further diagnosis. Because the classification models underperformed due to the complexity of the problem and insufficient data for certain cancer types, we focus our efforts in using the feedback from the pathologist to enhance model interpretability through a HITL hyperparameter optimization process.
Palabras clave
Human-in-the-Loop
Breast cancer
Segmentation
Classification
Interpretation
 
Descripción
Data availability: The dataset analyzed during the current study is available in the TCGA repository, URL: https://portal.gdc.cancer.gov/projects/ TCGA-BRCA. The images analyzed during the current study is available in the TCIA repository, URL: https://www.cancerimagingarchive.net/collection/ tcga-brca/.
 
This is an Accepted Manuscript. This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00521-024-10799-7 .
 
Versión del editor
https://doi.org/10.1007/s00521-024-10799-7
Derechos
© 2024, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature
ISSN
0941-0643
1433-3058
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias