Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A spatial statistical approach to estimate bus stop demand using GIS-processed data

Thumbnail
Ver/abrir
MonteroY_2024_Spatial-statistical_JoTG-118-103906.pdf (4.712Mb)
Use este enlace para citar
http://hdl.handle.net/2183/40239
Atribución-NoComercial-SinDerivadas
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas
Coleccións
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar o rexistro completo do ítem
Título
A spatial statistical approach to estimate bus stop demand using GIS-processed data
Autor(es)
Montero-Lamas, Yaiza
Fernández-Casal, Rubén
Varela-García, Francisco-Alberto
Orro, Alfonso
Novales, Margarita
Data
2024
Cita bibliográfica
Yaiza Montero-Lamas, Rubén Fernández-Casal, Francisco-Alberto Varela-García, Alfonso Orro, Margarita Novales. (2024). A spatial statistical approach to estimate bus stop demand using GIS-processed data, Journal of Transport Geography, 118, 103906, https://doi.org/10.1016/j.jtrangeo.2024.103906
Resumo
[Abstract:] This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.
Palabras chave
Geospatial analysis
Spatial dependence
GIS
Generalized additive models
Bus stop demand estimation
Transit planning
 
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
https://doi.org/10.1016/j.jtrangeo.2024.103906
Dereitos
Atribución-NoComercial-SinDerivadas

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións