Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

DSVD-autoencoder: A scalable distributed privacy-preserving method for one-class classification

Thumbnail
Ver/Abrir
FontenlaRomero_Oscar_2021_DSVD_autoencoder_A_scalable_distributed_privacy_preserving_method_for_one_class_classification.pdf - Versión aceptada (675.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/40142
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
DSVD-autoencoder: A scalable distributed privacy-preserving method for one-class classification
Autor(es)
Fontenla-Romero, Óscar
Pérez-Sánchez, Beatriz
Guijarro-Berdiñas, Bertha
Fecha
2021-01
Cita bibliográfica
Fontenla-Romero O, Pérez-Sánchez B, Guijarro-Berdiñas B. DSVD-autoencoder: A scalable distributed privacy-preserving method for one-class classification. Int J Intell Syst. 2021; 36: 177-199. https://doi.org/10.1002/int.22296
Resumen
[Abstract]: One-class classification has gained interest as a solution to certain kinds of problems typical in a wide variety of real environments like anomaly or novelty detection. Autoencoder is the type of neural network that has been widely applied in these one-class problems. In the Big Data era, new challenges have arisen, mainly related with the data volume. Another main concern derives from Privacy issues when data is distributed and cannot be shared among locations. These two conditions make many of the classic and brilliant methods not applicable. In this paper, we present distributed singular value decomposition (DSVD-autoencoder), a method for autoencoders that allows learning in distributed scenarios without sharing raw data. Additionally, to guarantee privacy, it is noniterative and hyperparameter-free, two interesting characteristics when dealing with Big Data. In comparison with the state of the art, results demonstrate that DSVD-autoencoder provides a highly competitive solution to deal with very large data sets by reducing training from several hours to seconds while maintaining good accuracy.
Palabras clave
Autoencoder
Big data
Distributed learning
Neural networks
One-class classification
Privacy-preserving
Singular value decomposition
 
Descripción
This is the peer reviewed version of the following article: DSVD-autoencoder: A scalable distributed privacy-preserving method for one-class classification, which has been published in final form at https://doi.org/10.1002/int.22296. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Versión del editor
https://doi.org/10.1002/int.22296
Derechos
© 2020 Wiley Periodicals LLC
ISSN
0884-8173

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias