Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Methods to Mitigate Human-Factor-Related Accidents in Maritime Transport

Thumbnail
Ver/Abrir
Orosa_Garcia_Jose_Antonio_2024_Deep_Learning_Methods_to_Mitigate_Human-Factor-Related_Accidents.pdf (3.917Mb)
Use este enlace para citar
http://hdl.handle.net/2183/40018
Creative Commons Attribution (CC BY) license 4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution (CC BY) license 4.0
Colecciones
  • Investigación (EPEF) [590]
Metadatos
Mostrar el registro completo del ítem
Título
Deep Learning Methods to Mitigate Human-Factor-Related Accidents in Maritime Transport
Autor(es)
Orosa, José A.
Cao-Feijóo, Genaro
Pérez-Canosa, José M.
Pérez Castelo, Francisco Javier
Fecha
2024
Cita bibliográfica
Cao-Feijóo, G.; PérezCanosa, J.M.; Pérez-Castelo, F.J.; Orosa, J.A. Deep Learning Methods to Mitigate Human-Factor-Related Accidents in Maritime Transport. J. Mar. Sci. Eng. 2024, 12, 1819. https:// doi.org/10.3390/jmse12101819
Resumen
[Abstract] Artificial intelligence aims to be the solution to multiple engineering problems by trying to emulate the human learning process. In this sense, maritime transport standards have clearly evolved, which are based on two principal pillars: the International Convention for the Safety of Life at Sea Convention (SOLAS) and the International Convention for the Prevention of Pollution from Ships (MARPOL). Based on a formal safety assessment research process, these pillars try to solve most of the maritime transport accidents, which, in their final steps, are associated with human factors. In this research, an original methodology employing a deep learning process for image recognition during mooring line operation, a dangerous process on ships, is developed. The main results indicate that the proposed method is an excellent tool for advising ship officers on watch and, consequently, provides a new way to prevent human factors onboard from causing accidents, which in the future must be considered in international standards.
Palabras clave
Artificial intelligence
Convolutional neural networks
Human factor
Maritime transport
 
Versión del editor
https://doi.org/10.3390/jmse12101819
Derechos
Creative Commons Attribution (CC BY) license 4.0

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias