Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • Ver ítem
  •   RUC
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis

Thumbnail
Ver/abrir
Cerdan_MariaEsperanza_2023_Identification_lncRNAs_deregulated_epithelial_ovarian_cancer.pdf (8.931Mb)
Use este enlace para citar
http://hdl.handle.net/2183/39973
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FCS) [1293]
Metadatos
Mostrar o rexistro completo do ítem
Título
Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis
Autor(es)
Salamini-Montemurri, Martín
Lamas, Mónica
Lorenzo-Catoira, Lidia
Vizoso-Vázquez, Ángel
Barreiro-Alonso, Aida
Rodríguez-Belmonte, Esther
Quindós-Varela, María
Cerdán, María Esperanza
Data
2023-06-28
Cita bibliográfica
Salamini-Montemurri, M.; Lamas-Maceiras, M.; Lorenzo-Catoira, L.; Vizoso-Vázquez, Á.; Barreiro-Alonso, A.; Rodríguez-Belmonte, E.; Quindós-Varela, M.; Cerdán, M.E. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 10798. https://doi.org/10.3390/ijms241310798
Resumo
[Abstract] Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Palabras chave
Long non-coding RNAs (lncRNAs)
Epithelial ovarian cancer (EOC)
Transcriptomics
Meta-analysis
 
Descrición
This article belongs to the Special Issue Non-coding RNAs' Functionality-Diagnosis and Therapy in Cancer and Other Indications
Versión do editor
https://doi.org/10.3390/ijms241310798
Dereitos
Atribución 4.0 Internacional
ISSN
1422-0067

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións