Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering of Gene Expression Profiles Applied to Marine Research

Thumbnail
Ver/Abrir
Rivero_Daniel_2013_Clustering_of_Gene_Expression_Profiles_Applied_to_Marine_Research.pdf (676.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/39887
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Clustering of Gene Expression Profiles Applied to Marine Research
Autor(es)
Aguiar-Pulido, Vanessa
Suárez-Ulloa, Victoria
Rivero, Daniel
Eirín-López, J.M.
Dorado, Julián
Fecha
2013
Cita bibliográfica
Aguiar-Pulido, V., Suárez-Ulloa, V., Rivero, D., Eirín-López, J.M., Dorado, J. (2013). Clustering of Gene Expression Profiles Applied to Marine Research. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_45
Resumen
[Abstract]: This work presents the results of applying two clustering techniques to gene expression data from the mussel Mytilus galloprovincialis. The objective of the study presented in this paper was to cluster the different genes involved in the experiment, in order to find those most closely related based on their expression patterns. A self-organising map (SOM) and the k-means algorithm were used, partitioning the input data into nine clusters. The resulting clusters were then analysed using Gene Ontology (GO) data, obtaining results that suggest that SOM clusters could be more homogeneous than those obtained by the k-means technique.
Palabras clave
Clustering
Microarray
Neural networks
Data mining
Bioinformatics
Gene ontology
 
Descripción
This version of the conference paper has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-642-38679-4_45.
 
Conference paper presented at: 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013.
 
Versión del editor
https://doi.org/10.1007/978-3-642-38679-4_45
Derechos
© 2013 Springer-Verlag Berlin Heidelberg.
 
Subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms).
 
ISSN
0302-9743
ISBN
978-3-642-38678-7

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias