Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption

Thumbnail
Ver/Abrir
RodriguezYanez_Santiago_2024_Efficient_Implementation_of_Multilayer_Perceptrons.pdf (433.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/39122
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption
Autor(es)
Cedrón, Francisco
Álvarez-González, S.
Ribas-Rodríguez, Ana
Rodríguez-Yáñez, S
Porto-Pazos, Ana B.
Fecha
2024
Cita bibliográfica
Cedron, F.; Alvarez-Gonzalez, S.; Ribas-Rodriguez, A.; Rodriguez-Yañez, S.; Porto-Pazos, A.B. Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption. Appl. Sci. 2024, 14, 8020. https://doi.org/10.3390/app14178020
Resumen
[Abstract]: A technique is presented that reduces the required memory of neural networks through improving weight storage. In contrast to traditional methods, which have an exponential memory overhead with the increase in network size, the proposed method stores only the number of connections between neurons. The proposed method is evaluated on feedforward networks and demonstrates memory saving capabilities of up to almost 80% while also being more efficient, especially with larger architectures.
Palabras clave
Neural networks
Multilayer perceptron
Compressed weight matrix
Weight density
Sparsity
 
Descripción
Data is contained within the article.
Versión del editor
https://doi.org/10.3390/app14178020
Derechos
Atribución 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias