Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption

Thumbnail
View/Open
RodriguezYanez_Santiago_2024_Efficient_Implementation_of_Multilayer_Perceptrons.pdf (433.2Kb)
Use this link to cite
http://hdl.handle.net/2183/39122
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1683]
Metadata
Show full item record
Title
Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption
Author(s)
Cedrón, Francisco
Álvarez-González, S.
Ribas-Rodríguez, Ana
Rodríguez-Yáñez, S
Porto-Pazos, Ana B.
Date
2024
Citation
Cedron, F.; Alvarez-Gonzalez, S.; Ribas-Rodriguez, A.; Rodriguez-Yañez, S.; Porto-Pazos, A.B. Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory Consumption. Appl. Sci. 2024, 14, 8020. https://doi.org/10.3390/app14178020
Abstract
[Abstract]: A technique is presented that reduces the required memory of neural networks through improving weight storage. In contrast to traditional methods, which have an exponential memory overhead with the increase in network size, the proposed method stores only the number of connections between neurons. The proposed method is evaluated on feedforward networks and demonstrates memory saving capabilities of up to almost 80% while also being more efficient, especially with larger architectures.
Keywords
Neural networks
Multilayer perceptron
Compressed weight matrix
Weight density
Sparsity
 
Description
Data is contained within the article.
Editor version
https://doi.org/10.3390/app14178020
Rights
Atribución 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback