Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses
Use this link to cite
http://hdl.handle.net/2183/39072
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional
Collections
- Investigación (FIC) [1615]
Metadata
Show full item recordTitle
Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analysesAuthor(s)
Date
2024-08Citation
López-Cortés, A., Cabrera-Andrade, A., Echeverría-Garcés, G. et al. Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses. Sci Rep 14, 19359 (2024). https://doi.org/10.1038/s41598-024-68565-7
Abstract
[Abstract]: The druggable proteome refers to proteins that can bind to small molecules with appropriate chemical affinity, inducing a favorable clinical response. Predicting druggable proteins through screening and in silico modeling is imperative for drug design. To contribute to this field, we developed an accurate predictive classifier for druggable cancer-driving proteins using amino acid composition descriptors of protein sequences and 13 machine learning linear and non-linear classifiers. The optimal classifier was achieved with the support vector machine method, utilizing 200 tri-amino acid composition descriptors. The high performance of the model is evident from an area under the receiver operating characteristics (AUROC) of 0.975 ± 0.003 and an accuracy of 0.929 ± 0.006 (threefold cross-validation). The machine learning prediction model was enhanced with multi-omics approaches, including the target-disease evidence score, the shortest pathways to cancer hallmarks, structure-based ligandability assessment, unfavorable prognostic protein analysis, and the oncogenic variome. Additionally, we performed a drug repurposing analysis to identify drugs with the highest affinity capable of targeting the best predicted proteins. As a result, we identified 79 key druggable cancer-driving proteins with the highest ligandability, and 23 of them demonstrated unfavorable prognostic significance across 16 TCGA PanCancer types: CDKN2A, BCL10, ACVR1, CASP8, JAG1, TSC1, NBN, PREX2, PPP2R1A, DNM2, VAV1, ASXL1, TPR, HRAS, BUB1B, ATG7, MARK3, SETD2, CCNE1, MUTYH, CDKN2C, RB1, and SMARCA4. Moreover, we prioritized 11 clinically relevant drugs targeting these proteins. This strategy effectively predicts and prioritizes biomarkers, therapeutic targets, and drugs for in-depth studies in clinical trials. Scripts are available at https://github.com/muntisa/machine-learning-for-druggable-proteins.
Keywords
Cancer
Computational biology and bioinformatics
Oncology
Computational biology and bioinformatics
Oncology
Editor version
Rights
Atribución-NoComercial-SinDerivadas 4.0 Internacional This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
ISSN
2045-2322