Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Business failure prediction models with high and stable predictive power over time using genetic programming

Thumbnail
Ver/abrir
Santos_Reyes_Jose_2024_Business_failure_prediction_models_with_high_and_stable_predictive_power.pdf (1.783Mb)
Use este enlace para citar
http://hdl.handle.net/2183/39069
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
Business failure prediction models with high and stable predictive power over time using genetic programming
Autor(es)
Beade, Angel
Rodríguez López, Manuel
Santos Reyes, José
Data
2024
Cita bibliográfica
Beade, Á., Rodríguez, M. & Santos, J. Business failure prediction models with high and stable predictive power over time using genetic programming. Oper Res Int J 24, 52 (2024). https://doi.org/10.1007/s12351-024-00852-7
Resumo
[Abstract]: This study focuses on the deterioration of the predictive power and the analysis of the predictive stability of business failure prediction models, an aspect not sufficiently analysed in previous research. Insolvency prediction is considered with three temporal horizons (1 year, 3 years and 5 years prior to failure). The Genetic Programming (GP) tool has been used to achieve prediction models with high performance and stability over time, considering a long post-learning period in the stability analysis. In addition, novel scenarios representative of actual model use are proposed and considered, as well as metrics to assess the deterioration of the models’ predictive power. The optimised GP prediction models (in the three temporal horizons) present a higher performance with respect to external references and, more importantly in relation to the objective of our study, the selected GP models substantially improve on the stability reported in previous studies, meeting the pursued requirements of degree of deterioration (less than 5%) and stability (Pearson’s coefficient of variation less than 5%). Thus, the predictions of the GP models after the learning are very stable (period 2008–2019), to a certain extent immune, with respect to their environment, responding adequately in both procyclical and countercyclical modes, all of which is particularly relevant as this period includes a strong recession and a strong recovery. This should help to increase the reliability of business failure prediction models. Moreover, the relevance of including variables other than the usual financial ratios as predictors of failure is confirmed.
Palabras chave
Business failure
Financial ratios
Prediction stability
Evolutionary computation
Genetic programming
 
Versión do editor
https://doi.org/10.1007/s12351-024-00852-7
Dereitos
Atribución 4.0 Internacional
 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
ISSN
1109-2858
1866-1505
 

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións