Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multistage strategy for ground point filtering on large-scale datasets

Thumbnail
View/Open
Teijeiro_Paredes_Diego_2024_Multistage_strategy_for_ground_point_filtering_on_large_scale_datasets.pdf (1.944Mb)
Use this link to cite
http://hdl.handle.net/2183/38935
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1684]
Metadata
Show full item record
Title
Multistage strategy for ground point filtering on large-scale datasets
Author(s)
Teijeiro, Diego
Amor, Margarita
Buján, Sandra
Richter, Rico
Döllner, Jürgen
Date
2024-08
Citation
Teijeiro Paredes, D., Amor López, M., Buján, S. et al. Multistage strategy for ground point filtering on large-scale datasets. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06406-0
Abstract
[Abstract]: Ground point filtering on national-level datasets is a challenge due to the presence of multiple types of landscapes. This limitation does not simply affect to individual users, but it is in particular relevant for those national institutions in charge of providing national-level Light Detection and Ranging (LiDAR) point clouds. Each type of landscape is typically better filtered by different filtering algorithms or parameters; therefore, in order to get the best quality classification, the LiDAR point cloud should be divided by the landscape before running the filtering algorithms. Despite the fact that the manual segmentation and identification of the landscapes can be very time intensive, only few studies have addressed this issue. In this work, we present a multistage approach to automate the identification of the type of landscape using several metrics extracted from the LiDAR point cloud, matching the best filtering algorithms in each type of landscape. An additional contribution is presented, a parallel implementation for distributed memory systems, using Apache Spark, that can achieve up to 34 x of speedup using 12 compute nodes.
Keywords
LiDAR point clouds
Landscape identification
Ground filtering
Apache spark
 
Description
The point clouds and LiDAR datasets used in this work belong to the LiDAR-PNOA data repository, region of Navarra, and were provided by Gobierno de Navarra. Dataset license: LiDAR-PNOA-cob2 2017 CC-BY 4.0 scne.es.
Editor version
https://doi.org/10.1007/s11227-024-06406-0
Rights
Atribución 4.0 Internacional
 
© 2024, The Authors
 
ISSN
0920-8542
1573-0484
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback