Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intelligent model for active power prediction of a small wind turbine

Thumbnail
Ver/abrir
Zayas-Gato_Francisco_2023_Intelligent_model_for_active_power_prediction.pdf (1.272Mb)
Use este enlace para citar
http://hdl.handle.net/2183/38292
Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/
A non ser que se indique outra cousa, a licenza do ítem descríbese como Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/
Coleccións
  • Investigación (EPEF) [590]
Metadatos
Mostrar o rexistro completo do ítem
Título
Intelligent model for active power prediction of a small wind turbine
Autor(es)
Zayas-Gato, Francisco
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Pérez Castelo, Francisco Javier
Piñón-Pazos, A.
Arce Fariña, Elena
Calvo-Rolle, José Luis
Data
2023-08
Cita bibliográfica
Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Francisco Javier Pérez-Castelo, Andrés Piñón-Pazos, Elena Arce, José Luis Calvo-Rolle, Intelligent model for active power prediction of a small wind turbine, Logic Journal of the IGPL, Volume 31, Issue 4, August 2023, Pages 785–803, https://doi.org/10.1093/jigpal/jzac040
Resumo
[Abstract] In this study, a hybrid model based on intelligent techniques is developed to predict the active power generated in a bioclimatic house by a low power wind turbine. Contrary to other researches that predict the generated power taking into account the speed and the direction of the wind, the model developed in this paper only uses the speed of the wind, measured mainly in a weather station from the government meteorological agency (MeteoGalicia). The wind speed is measured at different heights, against the usual measurements in others researches, which uses the wind speed and the direction measured in a weather station on the wind turbine nacelle. The prediction is performed 30 minutes ahead, what ensures that the Building Management System knows the energy generated by the low power wind turbine 30 minutes before, and it can adapt the consumption of different equipment in the house to optimize the power use. The main objective is to allow the Building Management System to optimize the uses of energy, taking into account the predicted amount of energy that will be produced and the energy consumed in the house. The developed model uses a hybrid topology with four clusters to improve the prediction, achieving an error lower than 6.5% for Mean Absolute Error measured in a final test. To perform this test, part of the original dataset was isolated from the beginning of the training process to check the model with a dataset that is not used before, simulating the model as it is receiving new data.
Palabras chave
Intelligent model
Hybrid model
Low power wind turbine
Microgrid
Power prediction
Energy use optimization
 
Descrición
Funding for open access charge: University of A Coruña / CISUG.
Versión do editor
https://doi.org/10.1093/jigpal/jzac040
Dereitos
Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/
ISSN
1368-9894

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións