Faster compressed quadtrees
No accesible hasta 2025-02-01
Use este enlace para citar
http://hdl.handle.net/2183/37832
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
- Investigación (FIC) [1576]
Metadatos
Mostrar el registro completo del ítemTítulo
Faster compressed quadtreesFecha
2023-02Cita bibliográfica
G. de Bernardo, T. Gagie, S. Ladra, G. Navarro, and D. Seco, "Faster compressed quadtrees", Journal of Computer and System Sciences, Vol. 131, pp. 86 - 104, Feb. 2023, doi: 10.1016/j.jcss.2022.09.001
Resumen
[Abstract]: Real-world point sets tend to be clustered, so using a machine word for each point is wasteful. In this paper we first show how a compact representation of quadtrees using O(1) bits per node can break this bound on clustered point sets, while offering efficient range searches. We then describe a new compact quadtree representation based on heavy-path decompositions, which supports queries faster than previous compact structures. We present experimental evidence showing that our structure is competitive in practice.
Palabras clave
Clustered points
Compact data structures
Heavy-path decomposition
Quadtrees
Range queries
Compact data structures
Heavy-path decomposition
Quadtrees
Range queries
Descripción
©2023 Elsevier B.V. All rights reserved. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/byncnd/
4.0/. This version of the article has been accepted for publication in Future
Generation Computer Systems. The Version of Record is available online at https://
doi.org/10.1016/j.jcss.2022.09.001 Versión aceptada An early partial version of this paper appeared in Proc. of the Data Compression Conference
2015.
Versión del editor
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España