Homogeneous and curvature homogeneous Lorentzian critical metrics

Use this link to cite
http://hdl.handle.net/2183/37717
Except where otherwise noted, this item's license is described as Creative Commons Attribution licence
https://creativecommons.org/licenses/by/4.0
Collections
- Investigación (EPEF) [590]
Metadata
Show full item recordTitle
Homogeneous and curvature homogeneous Lorentzian critical metricsDate
2023Citation
Brozos-Vázquez M, Caeiro-Oliveira S, García-Río E. Homogeneous and curvature homogeneous Lorentzian critical metrics. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2023;153(4):1272-1296. doi:10.1017/prm.2022.44
Abstract
[Abstract] We determine all three-dimensional homogeneous and 1 -curvature homogeneous Lorentzian metrics which are critical for a quadratic curvature functional. As a result, we show that any quadratic curvature functional admits different non-Einstein homogeneous critical metrics and that there exist homogeneous metrics which are critical for all quadratic curvature functionals without being Einstein.
Keywords
Quadratic curvature functional
Lorentzian
Critical metric
Curvature homogeneous
Homogeneous
Ricci soliton
Lorentzian
Critical metric
Curvature homogeneous
Homogeneous
Ricci soliton
Editor version
Rights
Creative Commons Attribution licence
https://creativecommons.org/licenses/by/4.0
ISSN
0308-2105