Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finding a needle in a haystack: insights on feature selection for classification tasks

Thumbnail
Ver/Abrir
MoranFernandez_Laura_2024_Finding_a_needle_in_a_haystack_insights_on_feature_selection_for_classification_tasks.pdf (1.557Mb)
Use este enlace para citar
http://hdl.handle.net/2183/37634
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Finding a needle in a haystack: insights on feature selection for classification tasks
Autor(es)
Morán-Fernández, Laura
Bolón-Canedo, Verónica
Fecha
2024-04
Cita bibliográfica
Morán-Fernández, L., Bolón-Canedo, V. Finding a needle in a haystack: insights on feature selection for classification tasks. J Intell Inf Syst 62, 459-483 (2024). https://doi.org/10.1007/s10844-023-00823-y
Resumen
[Abstract]: The growth of Big Data has resulted in an overwhelming increase in the volume of data available, including the number of features. Feature selection, the process of selecting relevant features and discarding irrelevant ones, has been successfully used to reduce the dimensionality of datasets. However, with numerous feature selection approaches in the literature, determining the best strategy for a specific problem is not straightforward. In this study, we compare the performance of various feature selection approaches to a random selection to identify the most effective strategy for a given type of problem. We use a large number of datasets to cover a broad range of real-world challenges. We evaluate the performance of seven popular feature selection approaches and five classifiers. Our findings show that feature selection is a valuable tool in machine learning and that correlation-based feature selection is the most effective strategy regardless of the scenario. Additionally, we found that using improper thresholds with ranker approaches produces results as poor as randomly selecting a subset of features.
Palabras clave
Classification
Dimensionality reduction
Feature selection
Filters
 
Descripción
Financiado para publicación en acceso aberto: CRUE-CSIC/Springer Nature
Versión del editor
https://doi.org/10.1007/s10844-023-00823-y
Derechos
Atribución 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias