Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Content-Based Approach to Profile Expansion

Thumbnail
Ver/abrir
Fernandez_Diego_2020_A_Content_Based_Approach_to_Profile_Expansion.pdf (472.5Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36892
Attribution-NonCommercial-NoDerivs 4.0 (CC BY- NC-ND)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution-NonCommercial-NoDerivs 4.0 (CC BY- NC-ND)
Coleccións
  • Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítem
Título
A Content-Based Approach to Profile Expansion
Autor(es)
Fernández, Diego
Formoso, Vreixo
Cacheda, Fidel
Carneiro, Víctor
Data
2020-12
Cita bibliográfica
D. Fernández, V. Formoso, F. Cacheda, and V. Carneiro, "A Content-Based Approach to Profile Expansion", International Journal of Uncertainty, Fuzziness and Knowldege-Based Systems, Vol. 28, Issue 6, pp. 981 - 1002, December 2020. doi: 10.1142/S0218488520500385
Resumo
[Abstract]: Collaborative Filtering algorithms suffer from the so-called cold-start problem. In particular, when a user has rated few items, recommendations offered by these algorithms are not too accurate. Profile Expansion techniques have been described as a way to tackle this problem without bothering the user with additional information requests by increasing automatically the size of the user profile. Up to now, only collaborative approaches had been proposed for Profile Expansion. However, content-based techniques can also be used. We perform a manual analysis of a movie dataset to analyze how content features behave. According to this analysis, we propose a content-based approach, which is also combined with collaborative information. Concretely, we expose the advantages and disadvantages of the combination with a popularity feature. Moreover, a comparison to pure collaborative approaches is performed. Our approach is evaluated in a new system situation. That is, not only the active user has few ratings, but also most of the users. The results show that content-based information is useful for rating prediction. In addition, recommendations are less personalized as popularity feature acquires more relevance for item selection.
Palabras chave
Collaborative filtering
Content-based
Profile expansion
Cold start
 
Versión do editor
https://doi.org/10.1142/S0218488520500385
Dereitos
Attribution-NonCommercial-NoDerivs 4.0 (CC BY- NC-ND)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións