Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of Pre-Trained Models Across Languages and Grammars

Thumbnail
Ver/abrir
Muñoz_Ortiz_2023_Assessment_pre-trained_models_across_lang_gram.pdf (1.925Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36572
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (FFIL) [877]
Metadatos
Mostrar o rexistro completo do ítem
Título
Assessment of Pre-Trained Models Across Languages and Grammars
Autor(es)
Muñoz-Ortiz, Alberto
Vilares, David
Gómez-Rodríguez, Carlos
Data
2023-11
Cita bibliográfica
Alberto Muñoz-Ortiz, David Vilares, and Carlos Gómez-Rodríguez. 2023. Assessment of Pre-Trained Models Across Languages and Grammars. In Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 359–373, Nusa Dua, Bali. Association for Computational Linguistics.
Resumo
[Absctract]: We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors.
Palabras chave
Syntax learning
Sequence labeling
Subword tokenization
Pre-trained word vectors
Language occurrence in pretraining data
 
Descrición
Bali, Indonesia. November, 1-4 2023.
Versión do editor
https://aclanthology.org/2023.ijcnlp-main.23/
Dereitos
Atribución 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións