Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems

Thumbnail
Ver/abrir
Michelena_Alvaro_2024_Novel_adaptive_approach_for_anomaly_detection_in_nonlinear.pdf (954.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/36558
Creative Commons Attribution License CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
A non ser que se indique outra cousa, a licenza do ítem descríbese como Creative Commons Attribution License CC BY 4.0 http://creativecommons.org/licenses/by/4.0/
Coleccións
  • Investigación (EPEF) [590]
Metadatos
Mostrar o rexistro completo do ítem
Título
Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems
Autor(es)
Michelena, Álvaro
Zayas-Gato, Francisco
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Fontenla-Romero, Óscar
Calvo-Rolle, José Luis
Data
2024
Cita bibliográfica
Álvaro Michelena, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Óscar Fontenla-Romero, José Luis Calvo-Rolle, Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems, Logic Journal of the IGPL, 2024;, jzae070, https://doi.org/10.1093/jigpal/jzae070
Resumo
[Abstract] The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of the method, especially in those processes with low noise.
Palabras chave
Anomaly detection
Fault detection
Online identification
Centroids
 
Descrición
Funding for open access charge: Universidade da Coruña/CISUG.
Versión do editor
https://doi.org/10.1093/jigpal/jzae070
Dereitos
Creative Commons Attribution License CC BY 4.0 http://creativecommons.org/licenses/by/4.0/
ISSN
1368-9894

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións