Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems

Thumbnail
View/Open
Michelena_Alvaro_2024_Novel_adaptive_approach_for_anomaly_detection_in_nonlinear.pdf (954.2Kb)
Use this link to cite
http://hdl.handle.net/2183/36558
Creative Commons Attribution License CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as Creative Commons Attribution License CC BY 4.0 http://creativecommons.org/licenses/by/4.0/
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems
Author(s)
Michelena, Álvaro
Zayas-Gato, Francisco
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Fontenla-Romero, Óscar
Calvo-Rolle, José Luis
Date
2024
Citation
Álvaro Michelena, Francisco Zayas-Gato, Esteban Jove, José-Luis Casteleiro-Roca, Héctor Quintián, Óscar Fontenla-Romero, José Luis Calvo-Rolle, Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems, Logic Journal of the IGPL, 2024;, jzae070, https://doi.org/10.1093/jigpal/jzae070
Abstract
[Abstract] The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of the method, especially in those processes with low noise.
Keywords
Anomaly detection
Fault detection
Online identification
Centroids
 
Description
Funding for open access charge: Universidade da Coruña/CISUG.
Editor version
https://doi.org/10.1093/jigpal/jzae070
Rights
Creative Commons Attribution License CC BY 4.0 http://creativecommons.org/licenses/by/4.0/
ISSN
1368-9894

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback