Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices

Thumbnail
Ver/Abrir
IglesiasMoris_Daniel_2021_Comprehensive_Analysis_of_the_Screening_of_COVID_19_Approaches_in_Chest_X_ray_Images_from_Portable_Devices.pdf (1.174Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36556
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices
Autor(es)
Iglesias Morís, Daniel
Moura, Joaquim de
Novo Buján, Jorge
Ortega Hortas, Marcos
Fecha
2021
Cita bibliográfica
D. I. Morís, J. de Moura, J. Novo and M. Ortega, "Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices", ESANN 2021 proceedings, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 6-8 October 2021, ISBN 978287587082-7, pp. 165-170. doi: https://doi.org/10.14428/esann/2021.ES2021-31
Resumen
[Abstract]: Computer-aided diagnosis plays an important role in the COVID-19 pandemic. Currently, it is recommended to use X-ray imaging to diagnose and assess the evolution in patients. Particularly, radiologists are asked to use portable acquisition devices to minimize the risk of cross-infection, facilitating an effective separation of suspected patients with other low-risk cases. In this work, we present an automatic COVID-19 screening, considering 6 representative state-of-the-art deep network architectures on a portable chest X-ray dataset that was specifically designed for this proposal. Exhaustive experimentation demonstrates that the models can separate COVID-19 cases from NON-COVID-19 cases, achieving a 97.68% of global accuracy.
Palabras clave
Computer aided diagnosis
Network architecture
 
Descripción
ESANN 2021 Proceedings - 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningOpen AccessPages 165 - 1702021 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021Virtual, Online 6 October 2021 through 8 October 2021 Code 178821
Versión del editor
https://doi.org/10.14428/esann/2021.ES2021-31
Derechos
© 2021 ESANN Intelligence and Machine Learning. All rights reserved.

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias