Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices

Thumbnail
View/Open
IglesiasMoris_Daniel_2021_Comprehensive_Analysis_of_the_Screening_of_COVID_19_Approaches_in_Chest_X_ray_Images_from_Portable_Devices.pdf (1.174Mb)
Use this link to cite
http://hdl.handle.net/2183/36556
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices
Author(s)
Iglesias Morís, Daniel
Moura, Joaquim de
Novo Buján, Jorge
Ortega Hortas, Marcos
Date
2021
Citation
D. I. Morís, J. de Moura, J. Novo and M. Ortega, "Comprehensive Analysis of the Screening of COVID-19 Approaches in Chest X-ray Images from Portable Devices", ESANN 2021 proceedings, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 6-8 October 2021, ISBN 978287587082-7, pp. 165-170. doi: https://doi.org/10.14428/esann/2021.ES2021-31
Abstract
[Abstract]: Computer-aided diagnosis plays an important role in the COVID-19 pandemic. Currently, it is recommended to use X-ray imaging to diagnose and assess the evolution in patients. Particularly, radiologists are asked to use portable acquisition devices to minimize the risk of cross-infection, facilitating an effective separation of suspected patients with other low-risk cases. In this work, we present an automatic COVID-19 screening, considering 6 representative state-of-the-art deep network architectures on a portable chest X-ray dataset that was specifically designed for this proposal. Exhaustive experimentation demonstrates that the models can separate COVID-19 cases from NON-COVID-19 cases, achieving a 97.68% of global accuracy.
Keywords
Computer aided diagnosis
Network architecture
 
Description
ESANN 2021 Proceedings - 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine LearningOpen AccessPages 165 - 1702021 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2021Virtual, Online 6 October 2021 through 8 October 2021 Code 178821
Editor version
https://doi.org/10.14428/esann/2021.ES2021-31
Rights
© 2021 ESANN Intelligence and Machine Learning. All rights reserved.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback