Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel intelligent approach for man-in-the-middle attacks detection over internet of things environments based on message queuing telemetry transport

Thumbnail
Ver/Abrir
Michelena_Alvaro_2024_A-novel-intelligent_approach_for_man_in_the_middle_attacks_detection.pdf (2.400Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36388
Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional
Colecciones
  • Investigación (EPEF) [592]
Metadatos
Mostrar el registro completo del ítem
Título
A novel intelligent approach for man-in-the-middle attacks detection over internet of things environments based on message queuing telemetry transport
Autor(es)
Michelena, Álvaro
Aveleira Mata, Jose Antonio
Jove, Esteban
Bayón Gutiérrez, Martín
Novais, Paulo
Fontenla-Romero, Óscar
Calvo-Rolle, José Luis
Alaiz Moretón, Héctor
Fecha
2024
Cita bibliográfica
Michelena, A., Aveleira‐Mata, J., Jove, E., Bayón‐Gutiérrez, M., Novais, P., Romero, O. F., ... & Aláiz‐Moretón, H. (2024). A novel intelligent approach for man‐in‐the‐middle attacks detection over internet of things environments based on message queuing telemetry transport. Expert Systems, 41(2), e13263. https://doi.org/10.1111/exsy.13263
Resumen
[Abstract]: One of the most common attacks is man-in-the-middle (MitM) which, due to its complex behaviour, is difficult to detect by traditional cyber-attack detection systems. MitM attacks on internet of things systems take advantage of special features of the protocols and cause system disruptions, making them invisible to legitimate elements. In this work, an intrusion detection system (IDS), where intelligent models can be deployed, is the approach to detect this type of attack considering network alterations. Therefore, this paper presents a novel method to develop the intelligent model used by the IDS, being this method based on a hybrid process. The first stage of the process implements a feature extraction method, while the second one applies different supervised classification techniques, both over a message queuing telemetry transport (MQTT) dataset compiled by authors in previous works. The contribution shows excellent performance for any compared classification methods. Likewise, the best results are obtained using the method with the highest computational cost. Thanks to this, a functional IDS will be able to prevent MQTT attacks.
Palabras clave
Artificial neural networks
Cybersecurity
Decision trees
K-nearest neighbors
Man-in-the-middle
Message queuing telemetry transport
Principal component analysis
Random forest
 
Versión del editor
https://doi.org/10.1111/exsy.13263
Derechos
Atribución-NoComercial 4.0 Internacional
ISSN
0266-4720
1468-0394
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias