Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing zebra crossing zones using LiDAR data

Thumbnail
Ver/abrir
EsmorisAM_2023_Charact-zebra-cross_C-ACaIE_38-13.pdf (4.703Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36272
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (ETSECCP) [827]
Metadatos
Mostrar o rexistro completo do ítem
Título
Characterizing zebra crossing zones using LiDAR data
Autor(es)
Esmorís Pena, Alberto Manuel
López Vilariño, David
Fernández-Arango, David
Varela-García, Francisco-Alberto
Cabaleiro, José Carlos
Rivera, Francisco F.
Data
2023
Cita bibliográfica
Esmorís, A. M., Vilariño, D. L., Arango, D. F., Varela‐García, F. A., Cabaleiro, J. C., Rivera, F. F. (2023). Characterizing zebra crossing zones using LiDAR data. Computer‐Aided Civil and Infrastructure Engineering, 38(13), 1767-1788. https://doi.org/10.1111/mice.12968
Resumo
[Abstract:] Light detection and ranging (LiDAR) scanning in urban environments leads to accurate and dense three-dimensional point clouds where the different elements in the scene can be precisely characterized. In this paper, two LiDAR-based algorithms that complement each other are proposed. The first one is a novel profiling method robust to noise and obstacles. It accurately characterizes the curvature, the slope, the height of the sidewalks, obstacles, and defects such as potholes. It was effective for 48 of 49 detected zebra crossings, even in the presence of pedestrians or vehicles in the crossing zone. The second one is a detailed quantitative summary of the state of the zebra crossing. It contains information about the location, the geometry, and the road marking. Coarse grain statistics are more prone to obstacle-related errors and are only fully reliable for 18 zebra crossings free from significant obstacles. However, all the anomalous statistics can be analyzed by looking at the associated profiles. The results can help in the maintenance of urban roads. More specifically, they can be used to improve the quality and safety of pedestrian routes.
Palabras chave
Light detection and ranging
LiDAR
Zebra crossings
Urban roads
Quality pedestrian routes
Safe pedestrian routes
 
Versión do editor
https://doi.org/10.1111/mice.12968
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións