Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary multi-target neural network architectures for flow void analysis in optical coherence tomography angiography

Thumbnail
Ver/Abrir
Lopez_Varela_Emilio_2024_Evolutionary_multi_target_neural_network_architectures.pdf (6.328Mb)
Use este enlace para citar
http://hdl.handle.net/2183/36204
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Evolutionary multi-target neural network architectures for flow void analysis in optical coherence tomography angiography
Autor(es)
López-Varela, Emilio
Moura, Joaquim de
Novo Buján, Jorge
Fernández-Vigo, José Ignacio
Moreno-Morillo, Francisco Javier
García-Feijóo, Julián
Ortega Hortas, Marcos
Fecha
2024-03
Cita bibliográfica
López-Varela, E., de Moura, J., Novo, J., Fernández-Vigo, J. I., Moreno-Morillo, F. J., García-Feijóo, J., & Ortega, M. (2024). Evolutionary multi-target neural network architectures for flow void analysis in optical coherence tomography angiography. Applied Soft Computing, 153, 111304.
Resumen
[Abstract]: Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to evaluate the retinal microvasculature. Recent advances in OCTA allows to visualize the blood flow within the choriocapillaris region, where a granular image is obtained showing a pattern of small dark regions, called flow voids (FVs). Given its relevance, numerous clinical studies have linked the changes in FVs distribution to multiple diseases. The granular structure of these images makes accurate labeling and segmentation difficult, which can be overcome by using a multi-target perspective. However, manually designing a neural architecture that can accurately predict all targets in a balanced way is a major challenge. In this work, we propose a novel methodology based on evolutionary multi-target optimized networks that, through a set of evolutionary operators, traverses a search space of architectures in a deep but efficient way. This methodology allows us to discover efficient and accurate multi-target architectures tailored to our problem, but which are also adaptable to other tasks due to their robustness. To validate and analyze our methodology and the discovered network model, we performed extensive experimentation with cases from a real clinical study, achieving better results than the state of the art and manually designed architectures.
Palabras clave
Central serous chorioretinopathy
Evolutionary neural networks
Flow voids
Multi-target
OCTA imaging
 
Versión del editor
https://doi.org/10.1016/j.asoc.2024.111304
Derechos
Atribución-NoComercial-SinDerivadas 4.0 Internacional
ISSN
1568-4946
1872-9681
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias