Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating the quality control of genetic sequences through stream processing

Thumbnail
Ver/Abrir
Castellanos_Rodriguez_Oscar_2023_Accelerating_the_quality_control_of_genetic_sequences_through_stream_processing.pdf (251.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/35759
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Accelerating the quality control of genetic sequences through stream processing
Autor(es)
Castellanos Rodríguez, Óscar
Expósito, Roberto R.
Touriño, Juan
Fecha
2023
Cita bibliográfica
Óscar Castellanos-Rodríguez, Roberto R. Expósito, and Juan Touriño. 2023. Accelerating the quality control of genetic sequences through stream processing. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23). Association for Computing Machinery, New York, NY, USA, 398–401. https://doi.org/10.1145/3555776.3577785
Resumen
[Abstract]: Quality control of DNA sequences is an important data preprocessing step in many genomic analyses. However, all existing parallel tools for this purpose are based on a batch processing model, needing to have the complete genetic dataset before processing can even begin. This limitation clearly hinders quality control performance in those scenarios where the dataset must be downloaded from a remote repository and/or copied to a distributed file system for its parallel processing. In this paper we present SeQual-Stream, a Big Data tool that allows performing quality control on genomic datasets in a fast, distributed and scalable way. To do so, our tool relies on the Apache Spark framework and the Hadoop Distributed File System (HDFS) to fully exploit the stream paradigm and accelerate the preprocessing of large datasets as they are being downloaded and/or copied to HDFS. The experimental results have shown significant improvements when compared to a batch processing tool, providing a maximum speedup of 2.7x.
Palabras clave
Big data
Stream processing
Next generation sequencing (NGS)
Quality control
Apache spark
 
Descripción
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23). Association for Computing Machinery, New York, NY, USA, 398–401. https://doi.org/10.1145/3555776.3577785.
Versión del editor
https://doi.org/10.1145/3555776.3577785
Derechos
Todos os dereitos reservados. All rights reserved.
ISBN
978-1-4503-9517-5

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias