Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks

Thumbnail
No accesible hasta 9999-99-99
Solicite una copia
Ver/Abrir
Ramil_Alberto_2018_Computer_vision_system_identification_granite-forming_minerals .pdf (860.9Kb)
Use este enlace para citar
http://hdl.handle.net/2183/35527
Colecciones
  • Investigación (EPEF) [590]
Metadatos
Mostrar el registro completo del ítem
Título
A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks
Autor(es)
Ramil, Alberto
López, Ana
Pozo Antonio, José Santiago
Rivas Brea, Teresa
Fecha
2017-12-19
Cita bibliográfica
Ramil A, López AJ, Pozo-Antonio JS, Rivas T. A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement 2018;117:90–95. https://doi.org/10.1016/j.measurement.2017.12.006.
Resumen
[Abstract]: Granitic stones are widely used in the field of Cultural Heritage in the north-western Iberian Peninsula. In some activities regarding conservation, such as the laser cleaning, it is of great interest the identification of the minerals on the granitic stone surface in order to improve the treatment and to avoid damages by means of the adaption of the fluence to each different forming mineral. The aim of this work is the optimization of a back propagation artificial neural network (ANN) in order to obtain the rapid and reliable identification of forming minerals in granitic rocks by means of RGB images. Our goal is, eventually, in situ monitoring the laser cleaning of granitic stonework. The results obtained, though preliminary, led a high degree of correct identification of the forming minerals for three different granitic types.
Palabras clave
Granite
Laser cleaning
Artificial neuronal network
RGB
Mineral identification
 
Versión del editor
https://doi.org/10.1016/j.measurement.2017.12.006
ISSN
1873-412X

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias