Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks

Thumbnail
Not available until 9999-99-99
Request a copy
View/Open
Ramil_Alberto_2018_Computer_vision_system_identification_granite-forming_minerals .pdf (860.9Kb)
Use this link to cite
http://hdl.handle.net/2183/35527
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks
Author(s)
Ramil, Alberto
López, Ana
Pozo Antonio, José Santiago
Rivas Brea, Teresa
Date
2017-12-19
Citation
Ramil A, López AJ, Pozo-Antonio JS, Rivas T. A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement 2018;117:90–95. https://doi.org/10.1016/j.measurement.2017.12.006.
Abstract
[Abstract]: Granitic stones are widely used in the field of Cultural Heritage in the north-western Iberian Peninsula. In some activities regarding conservation, such as the laser cleaning, it is of great interest the identification of the minerals on the granitic stone surface in order to improve the treatment and to avoid damages by means of the adaption of the fluence to each different forming mineral. The aim of this work is the optimization of a back propagation artificial neural network (ANN) in order to obtain the rapid and reliable identification of forming minerals in granitic rocks by means of RGB images. Our goal is, eventually, in situ monitoring the laser cleaning of granitic stonework. The results obtained, though preliminary, led a high degree of correct identification of the forming minerals for three different granitic types.
Keywords
Granite
Laser cleaning
Artificial neuronal network
RGB
Mineral identification
 
Editor version
https://doi.org/10.1016/j.measurement.2017.12.006
ISSN
1873-412X

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback