Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases

Thumbnail
Ver/Abrir
Alvarez_Marco_Antonio_2016_Analysis_and_Knowledge_Discovery_by_Means_of_Self_Organizing_Maps_for_Gaia_Data_Releases.pdf - Versión aceptada (1.590Mb)
Use este enlace para citar
http://hdl.handle.net/2183/35383
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases
Autor(es)
Álvarez, M. A.
Dafonte, Carlos
Garabato, D.
Manteiga, Minia
Fecha
2016
Cita bibliográfica
Álvarez, M.A., Dafonte, C., Garabato, D., Manteiga, M. (2016). Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_17
Es versión de
http://dx.doi.org/10.1007/978-3-319-46681-1_17
Resumen
[Abstract]: A billion stars: this is the approximate amount of visible objects estimated to be observed by the Gaia satellite, representing roughly 1 % of the objects in the Galaxy. It constitutes the biggest amount of data gathered to date: by the end of the mission, the data archive will exceed 1 Petabyte. Now, in order to process this data, the Gaia mission conceived the Data Processing and Analysis Consortium, which will apply data mining techniques such as Self-Organizing Maps. This paper shows a useful technique for source clustering, focusing on the development of an advanced visualization tool based on this technique.
Palabras clave
Gaia mission
European Space Agency
Data mining
Artificial intelligence
Self-Organizing Maps visualizations
 
Descripción
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-46681-1_17
 
Versión final aceptada de: Álvarez, M.A., Dafonte, C., Garabato, D., Manteiga, M. (2016). Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_17
 
Versión del editor
http://dx.doi.org/10.1007/978-3-319-46681-1_17
Derechos
© Springer International Publishing AG 2016

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias