Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases

Thumbnail
View/Open
Alvarez_Marco_Antonio_2016_Analysis_and_Knowledge_Discovery_by_Means_of_Self_Organizing_Maps_for_Gaia_Data_Releases.pdf - Versión aceptada (1.590Mb)
Use this link to cite
http://hdl.handle.net/2183/35383
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases
Author(s)
Álvarez, M. A.
Dafonte, Carlos
Garabato, D.
Manteiga, Minia
Date
2016
Citation
Álvarez, M.A., Dafonte, C., Garabato, D., Manteiga, M. (2016). Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_17
Is version of
http://dx.doi.org/10.1007/978-3-319-46681-1_17
Abstract
[Abstract]: A billion stars: this is the approximate amount of visible objects estimated to be observed by the Gaia satellite, representing roughly 1 % of the objects in the Galaxy. It constitutes the biggest amount of data gathered to date: by the end of the mission, the data archive will exceed 1 Petabyte. Now, in order to process this data, the Gaia mission conceived the Data Processing and Analysis Consortium, which will apply data mining techniques such as Self-Organizing Maps. This paper shows a useful technique for source clustering, focusing on the development of an advanced visualization tool based on this technique.
Keywords
Gaia mission
European Space Agency
Data mining
Artificial intelligence
Self-Organizing Maps visualizations
 
Description
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-319-46681-1_17
 
Versión final aceptada de: Álvarez, M.A., Dafonte, C., Garabato, D., Manteiga, M. (2016). Analysis and Knowledge Discovery by Means of Self-Organizing Maps for Gaia Data Releases. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_17
 
Editor version
http://dx.doi.org/10.1007/978-3-319-46681-1_17
Rights
© Springer International Publishing AG 2016

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback