Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical Analysis and Numerical Methods for Pricing Pension Plans Allowing Early Retirement

Thumbnail
View/Open
Calvo_Garrido_MC_2013_Mathematical_Analysis_and_Numerical_Methods.pdf (704.8Kb)
Use this link to cite
http://hdl.handle.net/2183/35207
Creative Commons Attribution 4.0 International (CC-BY)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International (CC-BY)
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Mathematical Analysis and Numerical Methods for Pricing Pension Plans Allowing Early Retirement
Author(s)
Calvo-Garrido, María-del-Carmen
Vázquez, Carlos
Pascucci, Andrea
Date
2013
Citation
Calvo-Garrido, M.C., Pascucci, Andrea & Vázquez, Carlos (2013). Mathematical Analysis and Numerical Methods for Pricing Pension Plans Allowing Early Retirement. SIAM Journal on Applied Mathematics 73 (2013), 5, 1747–1767. https://doi.org/10.1137/120864751
Abstract
[Abstract] In this paper, we address the mathematical analysis and numerical solution ofa model for pricing a defined benefit pension plan. More precisely, the benefits received by themember of the plan depend on the average salary and early retirement is allowed. Thus, we formulatethe mathematical model in terms of an obstacle problem associated to a Kolmogorov equation inthe time region where the salary is being averaged. Previously to the initial averaging date, wepose a nonhomogeneous one factor Black–Scholes equation. After stating the model, we study theexistence and regularity of solutions. Moreover, we propose appropriate numerical methods based ona Lagrange–Galerkin discretization and an augmented Lagrangian active set method. Finally, somenumerical examples illustrate the performance of the numerical techniques and the properties of thesolution and the free boundary.
Keywords
Retirement plans
Options pricing
Kolmogorov equations
Complementarity problem
Numerical methods
Augmented Lagrangian formulation
 
Editor version
https://doi.org/10.1137/120864751
Rights
Creative Commons Attribution 4.0 International (CC-BY)
 
©2013 by SIAMMathematics
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback