Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A fault detection system based on unsupervised techniques for industrial control loops

Thumbnail
View/Open
2019_Jove_Esteban_Fault_detection_system_based_on_unsupervised_techniques.pdf (10.97Mb)
Use this link to cite
http://hdl.handle.net/2183/35204
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
A fault detection system based on unsupervised techniques for industrial control loops
Author(s)
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Méndez Pérez, Juan Albino
Calvo-Rolle, José Luis
Date
2019-08
Citation
Jove E, Casteleiro-Roca J-L, Quintián H, Méndez-Pérez JA, Calvo-Rolle JL. A fault detection system based on unsupervised techniques for industrial control loops. Expert Systems. 2019; 36:e12395. https://doi.org/10.1111/exsy.12395
Abstract
[Abstract] This research describes a novel approach for fault detection in industrial processes, by means of unsupervised and projectionist techniques. The proposed method includes a visual tool for the detection of faults, its final aim is to optimize system performance and consequently obtaining increased economic savings, in terms of energy, material, and maintenance. To validate the new proposal, two datasets with different levels of complexity (in terms of quantity and quality of information) have been used to evaluate five well-known unsupervised intelligent techniques. The obtained results show the effectiveness of the proposed method, especially when the complexity of the dataset is high.
Keywords
Power cell
Fault detection
Anomaly detection
One-class
 
Description
Manuscrito aceptado
Editor version
https://doi.org/10.1111/exsy.12395
ISSN
1468-0394

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback