Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A rapid flood inundation model for hazard mapping based on least squares support vector machine regression

Thumbnail
Ver/Abrir
BermudezMaria_2019_JoFRM_12_12522.pdf - Versión aceptada (2.809Mb)
Use este enlace para citar
http://hdl.handle.net/2183/35170
Colecciones
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar el registro completo del ítem
Título
A rapid flood inundation model for hazard mapping based on least squares support vector machine regression
Autor(es)
Bermúdez, María
Cea, Luis
Puertas, Jerónimo
Fecha
2019
Centro/Dpto/Entidad
Enxeñaría da Auga e do Medio Ambiente (GEAMA)
Cita bibliográfica
Bermúdez, M., Cea, L., & Puertas, J. (2019). A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. Journal of Flood Risk Management, 12, e12522. https://doi.org/10.1111/jfr3.12522
Resumen
[Abstract:] Two-dimensional shallow water models are widely used tools for flood inundation mapping. However, even if High Performance Computing techniques have greatly decreased the computational time needed to run a 2D inundation model, this approach remains unsuitable for applications that require results in a very short time or a large number of model runs. In this paper we test a non-parametric regression model based on least squares support vector machines as a computationally efficient surrogate of the 2D shallow water equations for flood inundation mapping. The methodology is initially applied to a synthetic case study consisting of a straight river reach flowing towards the sea. A coastal urban area is then used as a real test case. Discharge in three streams and tide levels are used as predictor variables to estimate the spatial distribution of maximum water depth and velocity in the study area. The suitability of this regression model for the spatial prediction of flood hazard is evaluated. The results show the potential of the proposed regression technique for fast and accurate computation of flood extent and hazard maps.
Palabras clave
Flood hazard
Flood inundation
Iber model
Shallow water equations
Support vector machine
 
Descripción
Versión aceptada de https://doi.org/10.1111/jfr3.12522
Versión del editor
https://doi.org/10.1111/jfr3.12522

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias