Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A rapid flood inundation model for hazard mapping based on least squares support vector machine regression

Thumbnail
View/Open
BermudezMaria_2019_JoFRM_12_12522.pdf - Versión aceptada (2.809Mb)
Use this link to cite
http://hdl.handle.net/2183/35170
Collections
  • Investigación (ETSECCP) [826]
Metadata
Show full item record
Title
A rapid flood inundation model for hazard mapping based on least squares support vector machine regression
Author(s)
Bermúdez, María
Cea, Luis
Puertas, Jerónimo
Date
2019
Center/Dept./Entity
Enxeñaría da Auga e do Medio Ambiente (GEAMA)
Citation
Bermúdez, M., Cea, L., & Puertas, J. (2019). A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. Journal of Flood Risk Management, 12, e12522. https://doi.org/10.1111/jfr3.12522
Abstract
[Abstract:] Two-dimensional shallow water models are widely used tools for flood inundation mapping. However, even if High Performance Computing techniques have greatly decreased the computational time needed to run a 2D inundation model, this approach remains unsuitable for applications that require results in a very short time or a large number of model runs. In this paper we test a non-parametric regression model based on least squares support vector machines as a computationally efficient surrogate of the 2D shallow water equations for flood inundation mapping. The methodology is initially applied to a synthetic case study consisting of a straight river reach flowing towards the sea. A coastal urban area is then used as a real test case. Discharge in three streams and tide levels are used as predictor variables to estimate the spatial distribution of maximum water depth and velocity in the study area. The suitability of this regression model for the spatial prediction of flood hazard is evaluated. The results show the potential of the proposed regression technique for fast and accurate computation of flood extent and hazard maps.
Keywords
Flood hazard
Flood inundation
Iber model
Shallow water equations
Support vector machine
 
Description
Versión aceptada de https://doi.org/10.1111/jfr3.12522
Editor version
https://doi.org/10.1111/jfr3.12522

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback