Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Twitter: A Good Place to Detect Health Conditions

Thumbnail
Ver/abrir
PrietoVictor_2014_Twitter_good_place_detect_health_conditions.pdf (604.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/35044
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
Twitter: A Good Place to Detect Health Conditions
Autor(es)
Prieto Álvarez, Víctor Manuel
Matos, Sergio
Álvarez Díaz, Manuel
Cacheda, Fidel
Oliveira, José Luís
Data
2014-01
Cita bibliográfica
Prieto VM, Matos S, Álvarez M, Cacheda F, Oliveira JL (2014) Twitter: A Good Place to Detect Health Conditions. PLoS ONE 9(1): e86191. https://doi.org/10.1371/journal.pone.0086191
Resumo
[Absctract]: With the proliferation of social networks and blogs, the Internet is increasingly being used to disseminate personal health information rather than just as a source of information. In this paper we exploit the wealth of user-generated data, available through the micro-blogging service Twitter, to estimate and track the incidence of health conditions in society. The method is based on two stages: we start by extracting possibly relevant tweets using a set of specially crafted regular expressions, and then classify these initial messages using machine learning methods. Furthermore, we selected relevant features to improve the results and the execution times. To test the method, we considered four health states or conditions, namely flu, depression, pregnancy and eating disorders, and two locations, Portugal and Spain. We present the results obtained and demonstrate that the detection results and the performance of the method are improved after feature selection. The results are promising, with areas under the receiver operating characteristic curve between 0.7 and 0.9, and f-measure values around 0.8 and 0.9. This fact indicates that such approach provides a feasible solution for measuring and tracking the evolution of health states within the society.
Palabras chave
Twitter
Influenza
Depression
Eating disorders
Epidemiology
Machine learning
Pregnancy
Data mining
 
Versión do editor
https://doi.org/10.1371/journal.pone.0086191
Dereitos
Atribución 3.0 España
ISSN
1932-6203

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións