Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Twitter: A Good Place to Detect Health Conditions

Thumbnail
Ver/Abrir
PrietoVictor_2014_Twitter_good_place_detect_health_conditions.pdf (604.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/35044
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Twitter: A Good Place to Detect Health Conditions
Autor(es)
Prieto Álvarez, Víctor Manuel
Matos, Sergio
Álvarez Díaz, Manuel
Cacheda, Fidel
Oliveira, José Luís
Fecha
2014-01
Cita bibliográfica
Prieto VM, Matos S, Álvarez M, Cacheda F, Oliveira JL (2014) Twitter: A Good Place to Detect Health Conditions. PLoS ONE 9(1): e86191. https://doi.org/10.1371/journal.pone.0086191
Resumen
[Absctract]: With the proliferation of social networks and blogs, the Internet is increasingly being used to disseminate personal health information rather than just as a source of information. In this paper we exploit the wealth of user-generated data, available through the micro-blogging service Twitter, to estimate and track the incidence of health conditions in society. The method is based on two stages: we start by extracting possibly relevant tweets using a set of specially crafted regular expressions, and then classify these initial messages using machine learning methods. Furthermore, we selected relevant features to improve the results and the execution times. To test the method, we considered four health states or conditions, namely flu, depression, pregnancy and eating disorders, and two locations, Portugal and Spain. We present the results obtained and demonstrate that the detection results and the performance of the method are improved after feature selection. The results are promising, with areas under the receiver operating characteristic curve between 0.7 and 0.9, and f-measure values around 0.8 and 0.9. This fact indicates that such approach provides a feasible solution for measuring and tracking the evolution of health states within the society.
Palabras clave
Twitter
Influenza
Depression
Eating disorders
Epidemiology
Machine learning
Pregnancy
Data mining
 
Versión del editor
https://doi.org/10.1371/journal.pone.0086191
Derechos
Atribución 3.0 España
ISSN
1932-6203

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias