Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • View Item
  •   DSpace Home
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora

Thumbnail
View/Open
Vilares_David_2015_Sentiment_Analysis_on_Monolingual_Multilingual_and_Code_Switching_Twitter_Corpora.pdf (208.3Kb)
Use this link to cite
http://hdl.handle.net/2183/34995
Atribución-NoComercial-CompartirIgual 3.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 3.0 Internacional
Collections
  • Investigación (FFIL) [877]
Metadata
Show full item record
Title
Sentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora
Author(s)
Vilares, David
Alonso, Miguel A.
Gómez-Rodríguez, Carlos
Date
2015
Citation
David Vilares, Miguel A. Alonso, and Carlos Gómez-Rodríguez. 2015. Sentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora. In Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 2–8, Lisboa, Portugal. Association for Computational Linguistics.
Abstract
[Abstract]: We address the problem of performing po- larity classification on Twitter over differ- ent languages, focusing on English and Spanish, comparing three techniques: (1) a monolingual model which knows the language in which the opinion is written, (2) a monolingual model that acts based on the decision provided by a language iden- tification tool and (3) a multilingual model trained on a multilingual dataset that does not need any language recognition step. Results show that multilingual models are even able to outperform the monolingual models on some monolingual sets. We introduce the first code-switching corpus with sentiment labels, showing the robust- ness of a multilingual approach.
Keywords
Sentiment analysis
Twitter
Natural language processing
 
Editor version
https://doi.org/10.18653/v1/W15-2902
Rights
Atribución-NoComercial-CompartirIgual 3.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback