Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
  •   RUC
  • Facultade de Filoloxía
  • Investigación (FFIL)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A non-projective greedy dependency parser with bidirectional LSTMs

Thumbnail
Ver/Abrir
Vilares_David_2017_A_non_projective_greedy_dependency_parser_with_bidirectional_LSTMs.pdf (193.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34965
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FFIL) [877]
Metadatos
Mostrar el registro completo del ítem
Título
A non-projective greedy dependency parser with bidirectional LSTMs
Autor(es)
Vilares, David
Gómez-Rodríguez, Carlos
Fecha
2017-08
Cita bibliográfica
David Vilares and Carlos Gómez-Rodríguez. 2017. A non-projective greedy dependency parser with bidirectional LSTMs. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 152–162, Vancouver, Canada. Association for Computational Linguistics.
Resumen
[Abstract]: The LyS-FASTPARSE team present BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kiperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some ‘suffixed’ treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding ‘unsuffixed’ treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSE.
Palabras clave
Multilingual parsing
BIST-COVINGTON
Dependency parsing
Natural language processing
 
Versión del editor
https://doi.org/10.18653/v1/K17-3016
Derechos
Atribución 4.0 Internacional

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias