Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach

Use este enlace para citar
http://hdl.handle.net/2183/34758Colecciones
- Investigación (FIC) [1654]
Metadatos
Mostrar el registro completo del ítemTítulo
Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approachAutor(es)
Fecha
2024-02Cita bibliográfica
Mosqueira-Rey, E., Hernández-Pereira, E., Bobes-Bascarán, J. et al. Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach. Neural Comput & Applic 36, 2597–2616 (2024). https://doi.org/10.1007/s00521-023-09197-2
Resumen
[Abstract]: Any machine learning (ML) model is highly dependent on the data it uses for learning, and this is even more important in the case of deep learning models. The problem is a data bottleneck, i.e. the difficulty in obtaining an adequate number of cases and quality data. Another issue is improving the learning process, which can be done by actively introducing experts into the learning loop, in what is known as human-in-the-loop (HITL) ML. We describe an ML model based on a neural network in which HITL techniques were used to resolve the data bottleneck problem for the treatment of pancreatic cancer. We first augmented the dataset using synthetic cases created by a generative adversarial network. We then launched an active learning (AL) process involving human experts as oracles to label both new cases and cases by the network found to be suspect. This AL process was carried out simultaneously with an interactive ML process in which feedback was obtained from humans in order to develop better synthetic cases for each iteration of training. We discuss the challenges involved in including humans in the learning process, especially in relation to human–computer interaction, which is acquiring great importance in building ML models and can condition the success of a HITL approach. This paper also discusses the methodological approach adopted to address these challenges.
Palabras clave
Human-in-the-loop machine learning
Active learning
Interactive machine learning
Pancreatic cancer
Generative adversarial network
Active learning
Interactive machine learning
Pancreatic cancer
Generative adversarial network
Versión del editor
Derechos
Atribución 3.0 España
ISSN
0941-0643
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Enfoques de Aprendizaje en estudiantes de universidad : la escala bifactorial CEPE-U2F
Barca-Lozano, Alfonso; Peralbo, Manuel; Brenlla-Blanco, Juan-Carlos; Barca Enríquez, Eduardo (Universidade da Coruña, Servizo de Publicacións, 2019)[Resumen] Este trabajo tiene por finalidad la elaboración de la Escala abreviada de evaluación de enfoques de aprendizaje a partir de la Escala original de John Biggs (SPQ-Study Process Questionnaire) con una muestra de ... -
Ecologías de aprendizaje en la Era digital: desafíos para la educación superior
González-Sanmamed, Mercedes; Sangrà, Albert; Souto-Seijo, Alba; Estévez, Iris (Universidad de Granada, 2018-04-12)[Resumen] La inmersión de la sociedad en la era digital ha influido de manera decisiva en las formas de comportarse de las personas, en el ámbito del trabajo, de la economía, del entretenimiento y de la enseñanza. La ... -
Una integración a sistemas de gestión de aprendizaje en estándares de un sistema barra-bola
Montoro, Alicia; Ruano Ruano, Ildefonso; Estévez, Elisabet; Gómez Ortega, Juan; Gámez García, Javier (Universidade da Coruña, Servizo de Publicacións, 2021)[Resumen] Los laboratorios de tipo online tienen cada vez más aceptación dentro de la educación universitaria relacionada con las ciencias, tecnologías, ingenierías y matemáticas (CTIM o STEM en inglés), donde el trabajo ...